2015 Sec 3 Physics EOY Answers (Students' Copy)

<u>Paper 1 (30)</u> :	1 5	6 10	11 15	16 20	21 25	26 30
	CBCAD	CACBC	DDCDA	СССВС	CDBCB	BAADA

Solutions to selected questions:

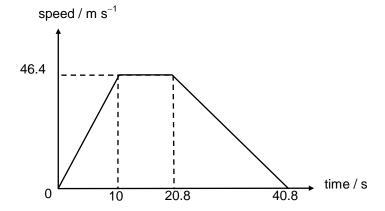
- 7: The object attains terminal velocity (constant velocity) means there is air resistance which would reduce the acceleration from 10 m s^{-2} till 0 m s⁻² (when net force becomes zero).
- 15: The fan blows air towards the right, the air exerts an equal and opposite force <u>on the fan</u> <u>towards the left</u>. This air also exerts <u>a force on the board towards the right</u>. There is <u>no net</u> <u>force</u> on the fan & board (both mounted on the cart).
- 17: Apply Newton's 3rd law of motion. (3) Your weight is the <u>gravitational force acting on your</u> <u>body by Earth</u>, while normal contact force is the force acting <u>on your body by the ground</u>. Both forces act <u>on the same body</u>, so they are <u>not</u> a pair of action-reaction forces.

21:
$$1^{st}$$
 cube: $P_1 = W/A = mg/A = V\rho g/A = x^3 \rho g/x^2 = x\rho g$; $P_2 = (2x)^3 \rho g/(2x)^2 = 2x\rho g = 2 P_1$

24: efficiency = useful work / total energy = useful work / (P x t), t = 3600 s.

Paper 2 Section A (40 marks)

1(a)1.10 kg[1]1(b)Mrs Tan's method is more accurate.[1]Each time a measurement is taken with the weighing scale, an error of ± 50 g could
be made.[1]EITHER weighing n number of fruits separately could result in an error of ± n × 50 g,
hence, it is better to weigh all the fruits at once.[1]OR The mass of more fruits weighed together is much greater than a single fruit. The
error of ± 50 g hence, becomes less significant.[1]


2(a)
$$a = (v - u)/t = (46.4 - 0) / 10.0$$
 [1]
= 4.639 $\approx \frac{4.64 \text{ m s}^{-2}}{4.64 \text{ m s}^{-2}}$ [1]

t = distance /
$$v = 500 / 46.39$$
 [1]

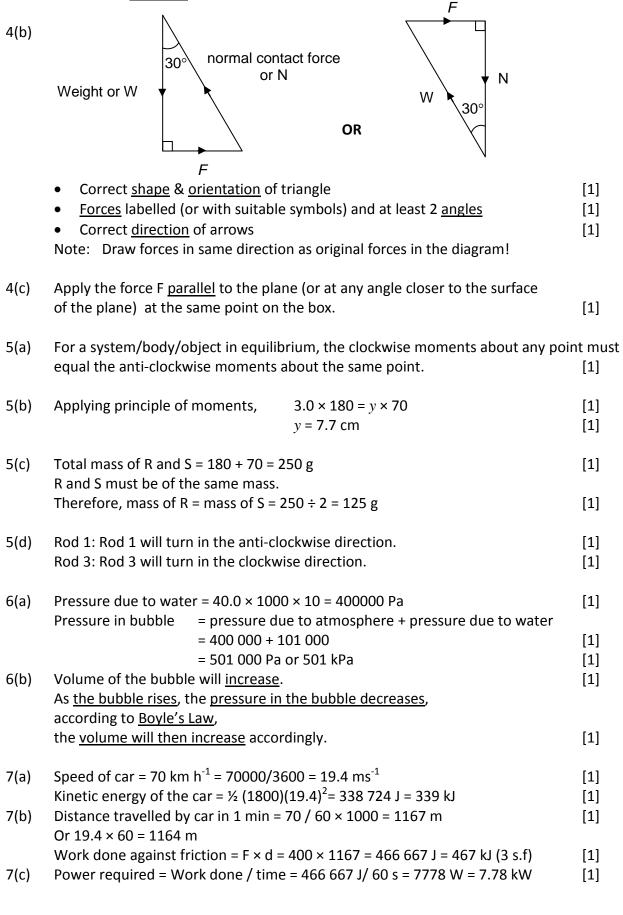
$$= 10.78 \approx 10.8 \text{ s}$$
 [1]

(c)

(b)

<u>Shape</u> of graph [1]
 <u>Labelling</u> of axes, speed and times <u>for each stage</u> [1]

3(a)
$$P = F_{net} = ma = (4.0 + 3.0 + 2.0) \times 2.1 = \underline{19 N}$$
 [1]


3(b) block A:
$$P - F_A = ma \rightarrow 18.9 - F_A = 4.0 \times 2.1$$
 [1]

Force on A by B,
$$F_A = 10.5 N$$
 [1]

OR
$$F_A$$
 =force on B by A = F_{net} = ma = (3.0 + 2.0) × (2.1)

3(c) Net force on C,
$$F_{net} = ma = 2.0 \times 2.1 = 4.2 \text{ N}$$
 [1]

- 4(a) "weight" (or gravitational force) & "normal contact force"
 - Correct <u>direction</u> of arrows

[1]

3.200 2.200 - 2.700	8(a)	Distance of object in front of mirror = distance of image behind mirror. Correct image, laterally inverted. All construction lines must be drawn. [2]
observer	8(b)	Light rays with arrows in correct direction, going into observer's eye. 2 sets of rays drawn from Q to two corners of eye to image of Q. Angle of incidence = Angle of reflection [2]

Paper 2 Section B (30 marks)

9(a)(i) freefall:	$v^2 = u^2 + 2as \rightarrow$	$v = \sqrt{(0^2 + 2(10)(3.0))}$	[1]
			[-]

$$= 7.746 \approx 7.7 \text{ m s}^{-1}$$
 (2 s.f.) [1]
Loss in g.p.e. = Gain in k.e.

OR Loss in g.p.e. = Gain in k.e.
mgh =
$$\frac{1}{2} \text{ mv}^2 \Rightarrow \text{ v} = \sqrt{(2gh)} = 7.7 \text{ m s}^{-1}$$

9(a)(ii) on impact:
$$v^2 = u^2 + 2as \Rightarrow a = (v^2 - u^2)/2s = (0^2 - 7.746^2)/2(0.65)$$
 [1]

$$\begin{array}{c} F \\ W \end{array} \qquad \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

9 (b)	When the parachute opens, a large air resistance (or drag force) acts upwards of	on the
	parachute & trainee.	[1]
	This <u>air resistance is greater than the total weight</u> of parachute and trainee.	[1]
	/ the <u>net force is upwards</u> causing him to decelerate.	

 9(c)
 As he slows down (or decelerates), the air resistance decreases.
 [1]

 When air resistance is equal to the total weight (of parachute and trainee)
 [1]

 / net force is zero / acceleration is zero, hence he reaches a constant speed.
 [1]

10(a) Construction lines on a fully labelled proper diagram. Connection between diagram and subsequent working must be explicit. Diagram to show reasonable proportions. [1]
 Explicit and clear working with statements leading to answer of 2.4 m. Answers with insufficient working will not be given the mark. [1]

 10(b) There are many approaches to solving this question. Explicit and clear working with statements leading to answer of 3.26 m or 3.3 m must be shown. [2] length = 3.26 m or 3.3 m. Answers with insufficient working will not be given the 				
	mark.	[1]		
 10(ci) clearly indicate angle <i>i</i> and and angle <i>r</i> on Fig 10.2 10(cii) Some form of Snell's Law clearly indicated: 1.00 sin 50° = 1.5 sin <i>r</i> Angle of refraction = 30.7 ° or 31 ° 10(ciii) Glass of a higher refractive index reduces the angle of refraction, leading to a 				
10(011)	smaller angle of incidence and reflection at the reflective coating. The ray from the main image will emerge closer to the ray from the ghost image, making the ghost image less distinct.	[1] [1]		
11	EITHER			
11(a)(i 11(a)(i		[1] [1] [1]		
11(b)	u = 20 m s ⁻¹ , v = 0 m s ⁻¹ , s = 1.00 m v = u + at \rightarrow t = (0 - 20) / (-200) = 0.10 s	[1] [1]		
11(c)	$F = ma = 65 \times 200 = 13\ 000\ N \text{ or } 1.3 \times 10^4\ N$	[1]		
11(d)	K.E. = $\frac{1}{2} \text{ mv}^2$ = $\frac{1}{2} (65) (20)^2$ = 13 000 J or 1.3 x 10 ⁴ J	[1] [1]		
 11(e) K.E. of the car decreases to zero. K.E. is converted to thermal (and sound) energy in the brakes which is dissipated to surroundings. (Other irrelevant energies mentioned will void the answer) 				
11	OR	[1]		
	$P = F / A = 25 200 / 4 \times 120 \times (0.01)^2$	[4]		
11(a) P	$= 525\ 000 \approx 530\ 000\ Pa\ or\ 5.3\ x\ 10^5\ Pa$	[1] [1]		
	Ballerina: $P = F / A = mg/A = (56 \times 10) / (0.01)^2 = 5.6 \times 10^6 Pa$ Ballerina exerts a higher pressure on the ground than the elephant.	[1] [1]		
11(c)(i) weight and normal contact force indicated with the length of the weight vector at least equal to the normal contact force vector. [1				
11(c)(ii) horizontal component = 1200 cos 25° = 1088 ≈ 1100 N (2 s.f.)				
11(c)(iii) net force = 1088 – 100 = 990 N (2 s.f.)				
11(c)(iv) acceleration a = F / m = 988 / 950 = $1.04 \approx 1.0 \text{ m s}^{-2}$ (2 s.f.)				