F08: Further Complex Numbers

1 (a) Show that if $z = e^{i\theta}$, then

$$z^n - \frac{1}{z^n} = 2\mathrm{i}\sin n\theta,$$

where *n* is a positive integer.

Hence, or otherwise, show that $\sin^5 \theta$ can be expressed in the form $a \sin \theta + b \sin 3\theta + c \sin 5\theta$

where the numbers
$$a$$
, b and c are to be determined. [3]

Deduce that $\cos^5 \theta$ can be expressed in the form $p \cos \theta + q \cos 3\theta + r \cos 5\theta$, where the numbers *p*, *q* and *r* are to be determined. [2]

(b) On the same Argand diagram sketch the loci of points given by each of the following equations:

$$L_1: |z+3-3i| = 3\sqrt{2},$$

 $L_2: \arg(z-3\sqrt{2}+3-3i) = \frac{5\pi}{6}$

Find, in the form x + iy, the exact complex number which represents the point on both L_1 and L_2 in the Argand diagram. [5]

2 Do not use a calculator in answering this question.

The complex number z is given by $1 + (\sqrt{3})i$.

- (a) Let $P(w) = 2w^3 + aw^2 + 10w + b$, where *a* and *b* are real. If P(z) = 0, find the values of *a* and *b* and determine all the roots of the equation P(w) = 0. [4]
- (b) Find the smallest positive integer *n* such that $(2z + z^*)^n$ is a positive real number. [3] (2016 ACJC / JC1 / Promo / Q2)
- 3 Consider the polynomial $P(z) = z^4 + z^3 + z^2 + z + 1$.
 - (i) By considering (z-1)P(z), find the solutions to the equation P(z) = 0, expressing the solutions in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. [3]
 - (ii) Show that $\frac{P(z)}{z^2} = w^2 + w 1$, where $w = z + \frac{1}{z}$. Determine the exact values of w such that P(z) = 0. [3]
 - (iii) Using the results from parts (i) and (ii), find the exact value of $\cos\left(\frac{2\pi}{5}\right)$ in surd form.
 - (2016 ACJC / JC1 / Promo / Q7)

[1]

- 4 Two complex numbers z_1 and z_2 , where $0 < \arg(z_1) < \arg(z_2) < \frac{\pi}{2}$, are roots to the equation $z^6 (32\sqrt{2} + 32\sqrt{2}i) = 0$.
 - (i) Show that $z_1 = 2e^{i\frac{\pi}{24}}$ and $z_2 = 2e^{i\frac{3\pi}{8}}$.
 - (ii) Show all the roots to the equation on an Argand diagram.
 - (iii) Given that z_1 and z_2 satisfy the equation |z w| = r, state, in exact forms, the cartesian equation of the line that the point corresponding to w lies on and the minimum value of r. [2]

(2016 CJC / JC1 / Promo / Q4)

[3]

[2]

- 5 It is given that the complex number $z = 1 + \cos \theta + i \sin \theta$, where $-\pi < \theta \le \pi$.
 - (i) By considering appropriate trigonometric identities, or otherwise, show that the argument of z is $\frac{\theta}{2}$ and find the modulus of z in terms of θ . [3]
 - (ii) Hence, find the real and imaginary parts of $(1 + \cos\theta + i\sin\theta)^n$, where $n \in \mathbb{Z}^+$. [3]
 - (iii) By considering the binomial expansion of $\left[1 + (\cos\theta + i\sin\theta)\right]^n$, show that

$$1 + \binom{n}{1} \cos \theta + \binom{n}{2} \cos (2\theta) + \dots + \binom{n}{n} \cos (n\theta) = \left[2 \cos \left(\frac{\theta}{2}\right) \right]^n \cos \left(\frac{n\theta}{2}\right),$$

where $\binom{n}{r} = \frac{n!}{r!(n-r)!}$. [3]

(2016 CJC / JC1 / Promo / Q7)

6 (i) Express
$$\frac{\sqrt{3}+i}{\sqrt{3}-i}$$
 in the form $re^{i\theta}$, where $r > 0$ and $0 \le \theta < 2\pi$. [2]

(ii) Hence find the smallest positive value of *n* for which $\left(\frac{\sqrt{3}+i}{\sqrt{3}-i}\right)^n$ is real and positive. [3] (2016 IJC / JC1 / Promo / Q3)

7 Write down, in the form $re^{i\theta}$, the five roots of the equation $w^5 - 1 = 0$.

Hence show that the roots of the equation $(1+z)^5 - (1-z)^5 = 0$ are i tan $\left(\frac{k\pi}{5}\right)$, where $k = 0, \pm 1, \pm 2$. [6] (2016 IJC / JC1 / Promo / Q4)

8 The complex numbers z_1 and z_2 are given by $1+\sqrt{3}i$ and 1+i respectively.

(i) Find $\frac{z_1}{z_2}$ in the form x + y i, giving x and y in the exact form. [3]

(ii) By considering the exponential forms of z_1 and z_2 , show that $\tan\left(\frac{\pi}{12}\right) = 2 - \sqrt{3}$. [4] (2016 IJC / JC1 / Promo / Q8) 9 (a) (i) Solve $z^5 = i$, giving your answers in the form $re^{i\theta}$, where $r > 0, -\pi \le \theta < \pi$. [3]

(ii) Hence, solve the equation $\left(\frac{z}{\sqrt{2}+\sqrt{2}i}\right)^5 = i$, giving your answers in a similar form. [3]

- (b) If z is a non-zero complex number, we define K(z) by the equation $K(z) = \ln |z| + i \arg(z), -\pi < \arg(z) \le \pi.$ Show that $K(z_1 z_2) = K(z_1) + K(z_2).$ [2] (2016 JJC / JC1 / Promo / O6)
- 10 (a) On the same Argand diagram, sketch the loci of points given by each of the following equations:

$$L_1: |z+2-i| = \sqrt{5}$$
,
 $L_2: \arg(z+3+i) = \alpha$, where $\alpha = \tan^{-1} 2$.

Find, in the form x + iy, the complex number which represents the point in the Argand diagram which is on both L_1 and L_2 , giving the exact values of x and y. [5]

(b) (i) Show that
$$\frac{1}{1 - e^{i\theta} \cos \theta} = 1 + i \cot \theta$$
, where $0 < \theta < \frac{\pi}{2}$. [2]

(ii) Given that $|z| \le 1$ and $0 < \theta < \frac{\pi}{2}$, state the sum of the infinite series $z + z^2 \cos \theta + z^3 \cos^2 \theta + \cdots$ [1]

(iii) By putting $z = e^{i\theta}$ in (ii) and using the result in (i), find

$$\sin\theta + \sin 2\theta \cos\theta + \sin 3\theta \cos^2\theta + \sin 4\theta \cos^3\theta + \cdots$$

simplifying your answer.

(2016 RI / JC1 / Promo / Q6)

11 (i) Show that if $z = e^{i\theta}$, then

$$z^k - \frac{1}{z^k} = 2i\sin k\theta$$

[1]

[3]

where *k* is a positive integer.

(ii) Show that $\sin^5 \theta$ can be expressed in the form

$$A\sin\theta + B\sin 3\theta + C\sin 5\theta$$
,
where the values of A, B and C are to be determined. [4]

(iii) Find the particular solution of the differential equation $\frac{dy}{dx} = (e^x \csc y)^5$, given that y = 0 when x = 0. [3]

(2016 TJC / JC1 / Promo / Q6)

- Sketch the locus of z that satisfies $|z-2-i| \le 2$ and Im(z) > 1. 12 **(i)** [3]
 - Find the maximum and minimum values of |z+2+i|. **(ii)** [3]
 - (iii) Find z in the form x + iy where $x, y \in \mathbb{R}$, such that $\arg(z+2+i)$ is a maximum. [6]

(2016 TJC / JC1 / Promo / Q10)

On a sketch of an Argand diagram, shade the region whose points represent complex 13 (i) numbers z which satisfy both the inequalities

$$|z-1-4i|^2 \le 5$$
 and $|z+2| \ge |z-2-12i|$. [5]

Determine exactly the greatest and least possible values of |z+3| for points in this region. (ii) |5|

(2017 ACJC / JC2 / BT / Q1)

14 The complex number z satisfies the inequalities

$$|z| \ge |z+2+2i|$$
 and $\frac{5\pi}{4} < \arg(-2-2i-z) \le \frac{3\pi}{2}$.

- (i) Sketch the locus of z on an Argand diagram. [5] [3]
- Find the exact range of $\arg(z+3i)$. (ii)

(2017 TJC / JC2 / BT / Q6)

(a) Solve $z^3 = -4\sqrt{2}(1+i)$, giving your answers in the form $re^{i\theta}$, where r > 0 and 15 $-\pi < \theta < \pi$. [3]

The complex number z_1 is a root of $z^3 = -4\sqrt{2}(1+i)$ with $-\frac{\pi}{2} < \arg(z_1) < 0$.

Given that $|w-z_1| = w$ for some complex number w, find w, showing your working clearly. [2]

On the same Argand diagram, sketch the loci of the points given by each of the following **(b)** equations:

$$L_{1}: |z - 1 - i\sqrt{3}| = 2,$$

$$L_{2}: \arg\left(z + 1 - i\left(2 + \sqrt{3}\right)\right) = -\frac{\pi}{4}.$$
 [3]

The complex numbers z_1 and z_2 represent the two points in the Argand diagram which are on both L_1 and L_2 .

Given that $\operatorname{Re}(z_2) > \operatorname{Re}(z_1)$, find $\arg(z_2)$ without using a calculator, leaving your answer in terms of π . [3]

(2017 ACJC / JC2 / MYE / Q2)

16 Show that

$$zz^* + c(z + z^*) + d = 0,$$

where c, d are real numbers and $c^2 > d$, represents a circle in the Argand diagram, stating its centre and radius. [4]

Shade in an Argand diagram the region for which

$$zz^* + 3(z + z^*) + 5 < 0.$$
 [2]
(2017 CJC / JC2 / MYE / Q1)

17 The variable complex number *z* satisfies the following inequalities :

$$|iz - \sqrt{3}i - 1| \le 2$$
 and $|z| \ge |iz - \sqrt{3}i - 1|$.

- (i) On an Argand diagram, sketch the region R satisfied by the point P which represents z. [4]
- (ii) Find the range of $|z + \sqrt{3} + i|$. [2]
- (iii) Find the exact value of z where $\arg(z+\sqrt{3}+i)$ is least. [2] (2017 DHS / JC2 / MYE P1 / Q5)

18 (a) (i) Find the roots of the equation
$$z^{8} + 1 = 0$$
 in the form $re^{i\theta}, r > 0, -\pi < \theta \le \pi$. [2]

(ii) On the Argand diagram, the points which represent the roots in (i) are rotated about the origin O in the clockwise sense by π/32 followed by scaling with a factor of √2 to obtain the points A, B, C, D, E, F, G and H. Find the equation in the form z⁸ = a + ib, a, b ∈ ℝ, whose roots are represented by A, B, C, D, E, F, G and H on the Argand diagram. [3]

(b) (i) Show that
$$1 + \cos\theta + i\sin\theta = 2\cos\left(\frac{1}{2}\theta\right)e^{i\frac{\theta}{2}}$$
. [2]

(ii) Use de Moivre's theorem to show that

$$\left(\frac{1}{1+\cos\theta+\mathrm{i}\sin\theta}\right)^n + \left(\frac{1}{1+\cos\theta-\mathrm{i}\sin\theta}\right)^n = \frac{\cos\left(\frac{n\theta}{2}\right)}{2^{n-1}\cos^n\left(\frac{\theta}{2}\right)}.$$
[3]

(iii) Given that
$$\left(\frac{1}{1+\cos\theta+i\sin\theta}\right)^4 + \left(\frac{1}{1+\cos\theta-i\sin\theta}\right)^4 = 1$$
, find the value of $\cos\theta$. [3]
(2017 DHS / JC2 / MYE P1 / Q9)

- 19 (a) Solve $(1-z)^6 + (1+z)^6 = 0$, giving your answers in the form $a i \tan b\pi$, where a and b are real constants to be determined, $0 \le b \le 1$. [6]
 - (b) On an Argand diagram, sketch the locus of points of z given by $|z-k-i| = |\sqrt{3}+i|, k \in \mathbb{R};$

showing the axial intercepts on the real axis.

On the same Argand diagram, sketch the locus of points of w given by

$$\arg(w+1) = \arg(\sqrt{3}+i)$$
. [3]

Hence find the range of values of k such that the two loci intersect at exactly one point. [3]

(2017 HCI / JC2 / MYE P1 / Q6)