2024 S4 Physics Prelim P2 Answer

unit penalty: deduct [1] per incorrect or missing unit. s.f. penalty: least s.f. or plus one unless stated otherwise. deduct [1] per paper.

Qn	Ans	Marks
1(a)	Speed is a <mark>scalar</mark> with <u>only magnitude.</u> Velocity is a <mark>vector</mark> with <u>both magnitude and direction.</u>	B1
	speed is scalar and velocity is a vector. [not acceptable, require explanation] define speed and define velocity. [not acceptable]	
1(b)(i)	4.5 s (accept 4.3 – 4.6 s)	A1
1(b)(ii)	The firework is moving upwards from 0 to 4.5 s with decreasing velocity. (It reaches the highest point at 4.5 s)	B1
	It is moving downwards after 4.5 s. [note: graph shows only 5.0s of motion]	B1
	ecf for timing using b(i) answer	
1(c)	10 m/s ² , downward 10 m/s ² , downward [note: the misconception]	B1 B1
	units is a must. cannot be negative.	
1(d)	Draw the resultant correctly (with label R) Resultant = $5.5 \times 10 = 55$ m/s (to correct sf) (acceptable $54 - 57$ m/s)	M1 A1
2()	maximum 1 mark for part (d) if no double arrow for resultant velocity	
2(a)	Gravitational force acting on Earth by the barrel.	B1
2(b)(i)	Work done = mgh = $14 \times 10 \times 3.2$	

2(b)(ii)	Energy is transferred mechanically by a force from the chemical potential store of the farmer to the gravitational potential store of the barrel.	B1
	note: accept no mention of store eg. chemical potential energy to gravitational potential energy	
2(c)(i)	P = WD/t	
	75 = 450/t	B1
	t = 6.0 s	B1
2(c)(ii)	taking downwards as positive,	
	W = mg = 140 N	
	Resultant force = ma = 7.0 N	
	$140 - Fu = 14 \times 0.50$	M1
	Fu = 133 N = 130 N (2 sf)	A1
3(a)	Water near the base is heated and expands and becomes less dense than	B1
	the surroundings. The heated water rises and the cooler denser water at the	B1
	top falls. Convection currents set up.	
3(b)(i)	Wood is a poor conductor of heat.	B1
	Slow down rate of heat transfer (to handle)	
	accept: thermal insulator	
3(b)(ii)	Shiny surface is a poor emitter of infrared radiation	B1
	annotate if student did not mention IR	
	(do not accept reflector, absorber)	
3(b)(iii)	Copper is a good conductor of heat.	B1
	Allows transfer of energy to water through heating.	
4(a)	Speed of light	B1
	Decreases	B1
4(b)(i)	Draw a normal at E, label with X	B1
4(b)(ii)	Read c correctly	C1
	$n = 1/\sin c$	
	$= 1/\sin 45^\circ = 1.4$ (2 sf)	A1
	allow ecf from 4(b)(i)	
4(b)(iii)	Angle of incidence at AC is greater than critical angle.	
	Total internal reflection occurs at E and there is no longer any ray travelling along EC. (describe)	B1
4(c)(i)	Obeys laws of reflection	B1
	(accept other properties found in the textbook eg transverse waves)	
	(not acceptable to mention 'does not require medium')	

4(c)(ii)	$V = f\lambda$	
	$3.0 \times 10^8 = f (690 \times 10^{-9})$	M1
	$f = 4.3 \times 10^{14} Hz$	A1
5(a)	<i>I</i> varies linearly with V (resistance is constant) and passes through origin for	B1
	the resistor.	
	[Do not accept: <i>I</i> is directly proportional to V (only)]	
	describe the features of the graph	
5(b)	7.0 V.	A1
	do not accept 7 V	
	must have unit	
5(c)	$R = V/I = 8/5.2 = 1.5 \Omega$	C1
	(choose a point that can be read accurately from the grid provided)	
	(accept if $V = 4 V$ and $I = 2.6 A$)	
	$Rx = 1.5 x 2 / 9 = 0.33 \Omega (2 sf)$	A1
5(d)	Q = I x t	
	$= P/V \times t$	
	$= 12/6 \times 12 \times 3600$	C1
	(C1 is for either correct sub for P/V or correct conversion) = 86 000 C	A1
	Accept if student use $I = 4.4$ A (from graph).	
	Q = 190 000 C.	
6(a)	$V_{out} = 600/(600 + 8000) \times 12$	C1
	= 0.84 V	A1
6(b)(i)	V = 12 V - 8.0 V = 4.0 V	B1
6(b)(ii)	4/12 = 8000/ (R + 8000)	A1
	R = 16000Ω	
6(c)	When light is dim, Vout is low and when light is bright, V _{out} is high.	B1
	The light will switch on when the light is bright.	B1
7(a)	First finger – magnetic field	
	Second finger – current	A1
7(b)(i)	split-ring commutator	
	carbon brush(es)	A1
7(b)(ii)	Interaction of magnetic field from current and permanent magnet produces	B1
	an upward force at the side of coil near to N-pole, while the side of the coil	
	near to S-pole acts downward. (or using Fleming's LHR)	
	The pair of forces create a turning effect (couple) about the axle.	B1

10(c)	Emits alpha which will not penetrate through the detector.	B1
(1 mark for correct values for Am and Np 1 mark for correct values for He	A1 A1
10(b)(i) 2. 10(b)(ii)	Not triggered/ affected by external factors such as temperature and pressure. $^{241}_{95}Am \rightarrow ^{237}_{93}Np + ^{4}_{2}He$	B1
10(b)(i) 1.	The exact time when a nucleus decay cannot be pre-determined	B1
10(a)	Tick in alpha (least) and gamma (most)	A1
9 (e)	Internal energy is an energy store that is made up of the total kinetic energy associated with the random motion of the particles and the total potential energy between the particles in the system (wax).	B1
9 (d)	Straight line instead of curve No change in the melting and boiling point.	B1 B1
9(c)	Lv is larger than Lf. (in the ratio of 14:9) The time taken needed for the change in state is longer.	B1 B1
9(0)(ii)	$\begin{array}{l} \text{energy supplied} = 123 \times 9 \times 60 = 67300 \text{ J} \\ \text{0.80 Pt} = \text{mL}_{\text{f}} \\ \text{0.80 x 125 x 9 x 60} = 200 \text{ L}_{\text{f}} \\ \text{L}_{\text{f}} = 270 \text{ J/g} \end{array}$	C1 A1
9(b)(i) <mark>9(b)(ii)</mark>	P = IV = 2.5 x 50.0 = 130 W (2 sf) energy supplied = 125 x 9 x 60 = 67500 J	A1 <mark>B1</mark>
9(a)(ii)	26 min	A1
9(a)(i)	80°C	A1
8(c)	The circuit is closed, there is induced current. By Lenz's Law, the direction of the induced current opposes the change (downward movement) producing it. This slows down the movement.	B1 B1
8(b)	deflect more The rod rolls faster, increase in the rate of change of magnetic flux	B1
	OR There is an increase in the area of circuit (including rod. Rail & voltmeter) and hence an increase in magnetic flux linking the circuit (rod and wires), by Faraday's Law of EMI, an emf is induced in the rod.	B1 B1
8(a)	As the copper rod rolls down, there is cutting of magnetic flux, by Faraday's Law of EMI, an emf is induced in the rod.	B1 B1

10(d)(i)	Since half-life is the average number of years for the radioactive substance	C1
	to decay to half of its original amount,	
	the half-life is <u>400 years</u>	A1
10(d)(ii)	The decrease in activity is insignificant comparing to the half-life and the	
	lifespan of 10 years.	B1
11(a)(i)	S N N S	B1
11(a)(ii)	Place the compass near the north pole of the bar magnet	B1
	Mark the end points of the compass needle on the paper eg X and Y	
	Move the compass so that one end of the compass coincides with one of the marked points.	B1
	Mark a third point at the other end of the compass needle. Continue doing	B1
	this until the compass reaches the south pole. Join the dots smoothly to get one magnetic field line.	
11(b)(i)	As iron is a magnetic material, the bar magnet will magnetise the pieces of	B1
	iron with an opposite pole on the side facing the magnet.	
	Unlike poles attract.	B1
11(b)(ii)	Electrons transferred from woollen cloth to rod. Rod has excess negative	B1
1.	charges.	
11(b)(ii)	The electrons on the upper surface of aluminium will be repelled by the rod,	B1
2.	leaving more positive charges on upper surface and more negative charges on lower surface.	
	There is a force of attraction on the upper surface and force of repulsion on the lower surface.	B1
	However, the upper surface is closer to the rod and so attraction is stronger.	B1
	Hence, the aluminium foil is attracted.	
12 (a)	When a body is in equilibrium, sum of clockwise moments about a pivot is	B1
	equal to sum of anticlockwise moments about the same pivot.	
12(b)(i)	Take moments about the pivot,	
	$F \times 1.2 = 185 \times 0.40 + 1100 \times 1.8$	C1
	F = 1700 N	B1
		A1
12(b)(ii)	F = 1700 +185 +1100	AI
12(b)(ii)	F = 1700 + 185 + 1100 = 2990 N	AI
12(b)(ii)		
12(b)(ii) 12(c)(i)	= 2990 N	C1

12(c)(ii) 1.	No change in distance	B1
12(c)(ii) 2.	Distance h increases	B1
12(d)	As temperature increases, average kinetic energy/ speed increases. Frequency of collisions increases and greater force exerted onto walls of	B1
	the cylinder for each collision.	B1