2023 H2 Prelim Paper 1 Solutions:

1	2	3	4	5	6	7	8	9	10
D	D	В	В	А	А	С	D	D	С
11	12	13	14	15	16	17	18	19	20
D	D	В	В	D	В	А	А	D	В
21	22	23	24	25	26	27	28	29	30
В	А	А	А	С	С	В	С	А	D

D

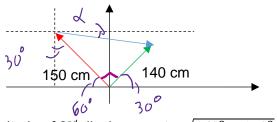
$$v = \frac{s}{t} = \frac{(385 - 115)}{(3.50 - 1.50)} = \frac{270}{2.00} = 135 \ mm \ s^{-1}$$

$$\frac{\Delta v}{v} = \frac{\Delta s}{s} + \frac{\Delta t}{t}$$

$$\frac{\Delta v}{135} = \frac{(1 + 1)}{270} + \frac{(0.02 + 0.02)}{2.00}$$

$$\Delta v = 3.7 = 4 \ mm \ s^{-1}$$

2 D



Magnitude of 2^{nd} displacement = $\sqrt{150^2 + 140^2} = 205 \ cm$

At a direction α = 90 – 30 – tan⁻¹ (140/150) = 17° below x axis or 343° anticlockwise to +x axis

1.2 x 10⁵ = 2(1.0 x 10⁵) a

a = 0.60 m s⁻²

At t = 20 s,

v = at = 0.60 x 20 = 12 m s⁻¹

back carriage moves with constant speed of 12 m s⁻¹, so in another 20 s, distance moved = $12 \times 20 = 240 \text{ m}$

front carriage now has acceleration of 1.2 m s⁻². In another 20 s,

 $s = ut + \frac{1}{2} at^2$

s = 12 (20) + $\frac{1}{2}$ (1.2)(20)² = 480 m

distance between front and back carriage = 480 - 240 = 240 m

4 B Ball A:

5

$$h = \frac{1}{2} gt^{2} \rightarrow \text{time of flight } t = \sqrt{\frac{2h}{g}}$$

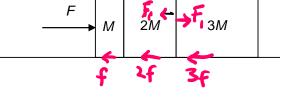
$$x_{A} = (2v)t = 2v\sqrt{\frac{2h}{g}}$$
Ball B:

$$2h = \frac{1}{2} gt^{2} \rightarrow \text{time of flight } t = \sqrt{2}\sqrt{\frac{2h}{g}}$$

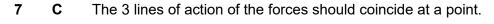
$$x_{B} = vt = v\sqrt{2}\sqrt{\frac{2h}{g}}$$

$$\frac{x_{A}}{x_{B}} = \frac{2}{\sqrt{2}} = \frac{\sqrt{2}}{1} = 1.41$$

A Consider the whole system, F - 6f = 6Ma $a = \frac{F - 6f}{6M}$ Let the force that 3M acts on 2M be F_1 . Consider Newton's 2nd law on 3M, $F_1 - 3f = 3Ma$ $F_1 = 3M\left(\frac{F - 6f}{6M}\right) + 3f = \frac{F}{2}$

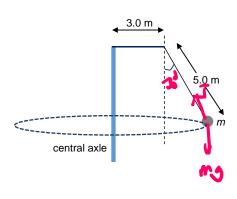


6 A Apply COM to the collision: (5.0)(200) = (5.0 + 95) u $u = 10 m s^{-1}$ Apply COE after collision: $\frac{1}{2} (100) (10^2) = (100)(9.81) H$ H = 5.1 m



 $\begin{array}{lll} \textbf{8} & \textbf{D} & \mbox{For each mass, Tension + Upthrust = Weight \Rightarrow Tension = Weight - Upthrust \\ & \mbox{Since rod is horizontal, tension is the same for both P and Q \\ & \mbox{Upthrust = V} \rho g \mbox{ is greater for P since liquid X is denser.} \\ & \mbox{So weight of P is greater to get the same tension as Q.} \end{array}$

9 D Let *T* be the tension in the string.
For vertical equilibrium of mass,
$$T\cos 30.0^{\circ} = mg$$
 (1)
For horizontal circular motion of mass,
 $T\sin 30.0^{\circ} = mr\omega^2$ (2)
 $\frac{(2)}{(1)} \rightarrow \tan 30.0^{\circ} = r\omega^2/g$
 $\tan 30.0^{\circ} = (3.0 + 5.0\sin 30^{\circ})\omega^2/9.81$
 $\omega = 1.01 \text{ rad s}^{-1}$
Time for one revolution $T = \frac{2\pi}{\omega} = 6.2 \text{ s}.$



10 C Apply Newton 2nd law:

Along tangent of circular path, $F - mg \sin \theta = 0$

Along the radial direction,

 $T - mg \cos \theta = mr\omega^2$

Thus $T = mr\omega^2 + mg \cos \theta$, so T varies with $\cos \theta$ Note: Tension is largest at lowest point and smallest at highest point in a vertical circle.

11 D At point P,

$$\Phi_{P} = \left(-\frac{GM}{r/3}\right) + \left(-\frac{GM_{B}}{2r/3}\right)$$
$$= -\frac{G}{r}(3M + 1.5M_{B})$$

At point Q,

$$\Phi_{Q} = \left(-\frac{GM}{2r/3}\right) + \left(-\frac{GM_{B}}{r/3}\right)$$
$$= -\frac{G}{r}\left(1.5M + 3M_{B}\right)$$

$$\Phi_{Q} = 1.25 \Phi_{P}, \text{so}$$
$$(1.5M + 3M_{B}) = 1.25(3M + 1.5M_{B})$$
$$\Rightarrow M_{B} = 2M$$

Consider the forces on the satellite:

12 D

$$\frac{GMm}{GMm} = mr\omega^2 \implies \omega^2 \propto \frac{1}{2}$$

$$\frac{1}{r^2} = 1111 \omega \qquad \implies \qquad \omega \propto \frac{1}{r^3}$$

So when r decreases, both gravitational force on the satellite and the its angular velocity increase. So A and B are wrong statements.

Consider the various energies associated with an orbiting satellite:

$$KE = + \frac{GMm}{2r}, GPE = -\frac{GMm}{r}$$

So when radius r decreases, KE increases while <u>GPE</u> <u>decrease</u>. So only D is correct.

13 B

$$10 = \frac{mc\Delta\theta}{t} + h - (1)$$
 where h is rate of heat loss to surroundings

$$18 = \frac{3\text{mc}\Delta\theta}{t} + \text{h---}(2)$$
 Solving (1) and (2) gives h = 6.0 W

14 B At constant P, V α T. When cooled, T decreases, so V decreases. Since gas undergoes compression, work is done on the gas. W = +ve

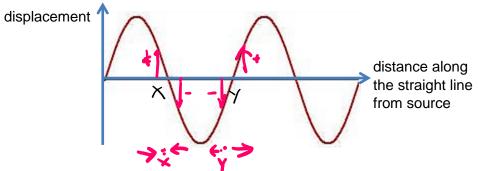
When T decreases, $\Delta U = -ve$,

according to 1^{st} law of thermodynamics $\Delta U = q + W$

 $-ve = q + (+ve) \Rightarrow q$ must be -ve

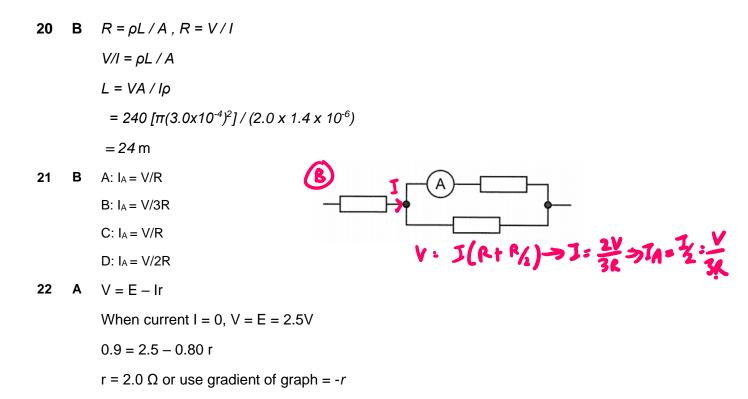
15 D Given $x_o = 0.030$ m, from graph → period T = 2.0 s Max v = $x_o ω = 0.030$ x (2π/2.0) = 0.094 ms⁻¹

16 B

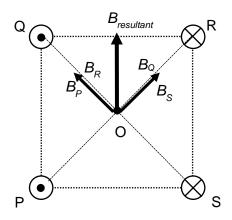


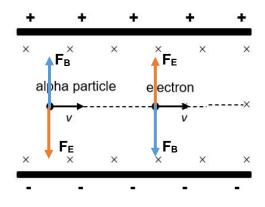
At X, the two neighbouring particles are moving towards the particle at X, so it is a compression region . At Y the two neighbouring particles are moving away from the particle at Y.

- **17** A Rayleigh's criteria, minimum angle of resolution $\theta = \lambda/b$. size of the pupil \approx slit width b. If b increases, θ decreases. (If θ is small, images are easily resolved.)
- **18** A When the two polarisers are parallel($\theta = 0$), the intensity of emergent beam is I_0 When Q is rotated at angle θ , the intensity of emergent beam is reduced by 30%, which means final intensity should be $0.70I_0$. Appy Malus Law, $0.70I_0 = I_0 \cos^2 \theta$ In the first quadrant, $\theta = 33^\circ$
 - In the third quadrant, $\theta = 180^{\circ} + 33^{\circ} = 213^{\circ}$
- **19 D** The electric field within the conductor will be zero(since no net charge/equipotential inside a conductor) while the external regions will still have a uniform electric field pointing from positive to negative plate.



A Apply RH Grip Rule to determine the direction of B-field at O due to the currents flowing in a straight wire at P, Q, R and S respectively. Vector sum of the B fields gives direction A.



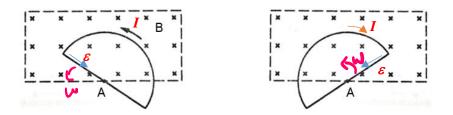


electron passes undeflected so

electric force F_E = magnetic force F_B

conditions for passing through undeflected does not depends on mass or charge so outcome is the same.

25 C Similar to Faraday's homopolar generator. The induced current $I = \varepsilon/R = B\pi r^2 f/R$, which is **a constant value** when r and f are kept constant. However the direction of current changes clockwise or anticlockwise, depending on which radii is cutting the flux(use Fleming RH rule).



26 C de Broglie wavelength $\lambda = h/mv$, so $\lambda \propto 1/m$ for same speed v.

Since mass of electron is much smaller than proton, $\lambda_e > \lambda_p$

For single slit diffraction pattern, bsin $\theta = \lambda$, so sin $\theta \propto \lambda$, \rightarrow diffraction angle for electron is much larger than protons.

27 B Electrons:
$$dN_e/dt = 1 / e = 2.0 \times 10^{-6} / 1.6 \times 10^{-19}$$

Photons: $dN_p/dt = P / E = 0.31 \times 10^{-3} / 3.11 \times 1.6 \times 10^{-19}$

Ratio = 0.020

28 C
$$p = mv = (9.11 \times 10^{-31})(1.50 \times 10^{6}) = 1.37 \times 10^{-24} \text{ kg m s}^{-1}$$

 $\Delta p = 0.2\% \text{ x } p = 0.002 \text{ p} = 0.002(1.37 \times 10^{-24}) = 2.73 \times 10^{-27} \text{ kg m s}^{-1}$
 $\Delta x = h/(\Delta p) = 6.63 \times 10^{-34} / (2.73 \times 10^{-27}) = 2.4 \times 10^{-7} \text{ m}$

24 A

- **29** A Energy released = BE of products BE of reactants = $(8.32 \times 136) + (8.58 \times 98) - (7.60 \times 235) = 186$ MeV
- **30** D Initial true count rate = 90 10 = 80No of half lives = 12/24 = 0.5 $C = 80(1/2)^{0.5} = 57 \text{ min}^{-1}$ Final count = $57+10 = 67 \text{ min}^{-1}$