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Answer ALL the questions  

 

1       (a)     Express 3𝑥2 − 8𝑥 − 3 in the form 𝑎(𝑥 + 𝑏)2 + 𝑐, where 𝑎, 𝑏 and 𝑐 are constants 

to be determined.         [3] 

 3 (𝑥2 − (2) (
4

3
) 𝑥 + (

4

3
)

2

− (
4

3
)

2
) − 3    M1 

 = 3 (𝑥 −
4

3
)

2

− 3 (
16

9
) − 3 

= 3 (𝑥 −
4

3
)

2

−
25

3
       A1 

 

 𝑎 = 3 𝑏 = −
4

3
 𝑐 = −

25

3
    B1 

    

(b)    Hence, find the turning point and the value of 𝑥 where it occurs.  [2] 

 Turning Point = (
4

3
, −

25

3
) 

 Value of 𝑥 =
4

3
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2       (a)     Write down and simplify the first three terms in the expansion, in ascending 

powers of x,  of  (2 +
𝑥

2
)

𝑛

 , where n is a positive integer.   [3] 

 (2 +
𝑥

2
)

𝑛

= 2𝑛 + 𝑛(2)𝑛−1 (
𝑥

2
) +

𝑛(𝑛−1)

2
(2)𝑛−2 (

𝑥

2
)

2

+ ⋯ M2 

            = 2𝑛 +
𝑥𝑛(2)𝑛

4
+

𝑛(𝑛−1)𝑥2(2)𝑛

32
+ ⋯   A1 

 

(b)    The first two terms in the expansion, in ascending powers of x, of     

(
4

3
− 3𝑥) (2 +

𝑥

2
)

𝑛

 are a + bx2. Find the value of 𝑛.    [3] 

 

 (
4

3
− 3𝑥) (2 +

𝑥

2
)

𝑛

= (
4

3
− 3𝑥) [2𝑛 +

𝑥𝑛(2)𝑛

4
+

𝑛(𝑛−1)𝑥2(2)𝑛

32
+ ⋯ ] 

      =
4

3
× 2𝑛 +

𝑥𝑛(2)𝑛

3
+

𝑛(𝑛−1)𝑥2(2)𝑛

24
− 3𝑥2𝑛 −

3𝑥2𝑛(2)𝑛

4
+ ⋯ 

        B1 

No 𝑥 term: 

 
𝑛(2)𝑛

3
− 3(2)𝑛 = 0      M1 

 𝑛 = 9        A1 

 

(c) Find the term independent of 𝑥 in the expansion of (𝑥 −
1

2𝑥2)
9

.   [3] 

 𝑻𝒓+𝟏 = (
𝟗
𝒓

) (𝒙)𝟗−𝒓 (−
𝟏

𝟐𝒙𝟐)
𝒓

 

 

 Term independent of 𝒙: 

 𝟗 − 𝒓 − 𝟐𝒓 = 𝟎       M1 

 𝒓 = 𝟑        A1  

   

 

 Term independent of 𝒙 

 = (
𝟗
𝟑

) (𝒙)𝟗−𝟑 (−
𝟏

𝟐𝒙𝟐
)

𝟑

 

 = −
𝟐𝟏

𝟐
        B1 
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3 Radiocarbon dating, or carbon-14 dating, is a scientific method that can accurately 

determine the age of organic materials as old as approximately 60,000 years. The 

technique is based on the decay of the carbon-14 isotope. The time in which half of the 

original number of atom decay is defined as the half-life. It is modelled by the equation 

𝑁 = 𝑁0𝑒−𝑘𝑡, where 𝑘 is a constant and 𝑡 is the time in years. 𝑁0 is the initial amount of 

material in an object.   

 

 Carbon-14 has a half life of 5730 years, meaning that 5730 years after an organism dies, 

half of its carbon-14 atoms have decayed. 

  

(a) Find the value of 𝑘.        [2] 

 
1

2
= 𝑒−𝑘(5730)        M1 

𝑘 =
ln(

1

2
)

−5730
        A1 

   = 0.0001209681 

   = 0.000121 

 

(b) A mummified body was found to have 8% of its original atoms left. How many 

years ago did the person die? Leave your answer to the nearest whole number. [2] 

 

  
8

100
= 𝑒−0.0001209681𝑡       M1 

  𝑡 =
ln(

8

100
)

−0.0001209681
   

     = 20879 years       A1 
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4 Solutions to this question by accurate drawing will not be accepted.  

  

 

 

 

 

 

 

 

 

 

 OABC is a trapezium with right angle OAB. The coordinates of A and B are (−2k, 3k) 

and (0, t) respectively, where k > 0, and OA = √117 units. Find 

(a)    the value of k and show that A is (−6, 9),      [2] 

length 𝑂𝐴 = √4𝑘2 + 9𝑘2    M1 

  117 = 13𝑘2 

  𝑘 = 3  𝑘 = −3 (rej)    A1 

 

Hence, 𝐴 is (−2 × 3 , 3 × 3) = (−6, 9) 

 

 (b)    the equation of AB,         [3]\ 

 Gradient of 𝑂𝐴 =
9

−6
 

            = −
3

2
     M1    

 Gradient of 𝐴𝐵 =
2

3
     M1 

 Equation of 𝐴𝐵: 

 𝑦 − 9 =
2

3
(𝑥 + 6) 

 𝑦 =
2

3
𝑥 + 13      A1 

    

 

 

 

x 

y 

O 

B (0, t) 

    A  

(−2k, 3k)    . 

C 
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(c) the coordinates of C if 𝑂𝐶 =
1

2
𝐴𝐵,      [1] 

 Coordinates of 𝐵 = (0, 13) 

 Coordinates of 𝐶 = (
6

2
,

4

2
) 

    = (3, 2) 

 

(d)  the area of 𝑂𝐴𝐵𝐶.        [2] 

 Area =
1

2
|
0 3 0
0 2 13

    
−6 0
9 0

|    M1 

      =
1

2
|(39) − (−78)| 

      =
117

2
 units2     A1 

 

Triangle 𝑂𝐴𝐵 lies in a circle 𝐶.  

(e) Explain why OB is the diameter of the circle.     [1] 

 By property of angles in a semicircle, since angle 𝑂𝐴𝐵 = 90°, 

 𝑂𝐵 is the diameter of the circle C1. 

 

(f)  Find the equation of the circle 𝐶.       [3] 

 

 Radius= 6.5      B1 

 Center of circle = (0,
13

2
 )    B1   

 Equation of 𝐶1: 

 

 (𝑥 − 0)2 + (𝑦 −
13

2
)

2

= (
13

2
)

2

   

 𝑥2 + (𝑦 −
11

2
)

2

=
169

4
     B1 
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5 The diagram shows two right-angled triangles, ABC and DEC. ∠𝐵𝐴𝐶 =  ∠𝐶𝐷𝐸 =  𝜃 , 

AB = 3.5 cm and DE = 6 cm. 

      

(a)     Show that BD = 6 cos 𝜃 + 3.5 sin 𝜃.      [2] 

 sin 𝜃 =
𝐵𝐶

3.5
    cos 𝜃 =

𝐶𝐷

6
 

 𝐵𝐶 = 3.5 sin 𝜃 B1   𝐶𝐷 = 6 cos 𝜃  B1 

 

 𝐵𝐷 = 𝐵𝐶 + 𝐶𝐷 

    = 6 cos 𝜃 + 3.5 sin 𝜃 (shown) 

 

(b)  Express BD in the form 𝑅 cos(𝜃 − 𝛼), where 𝑅 > 0 and 𝛼 is an acute angle. [3] 

 𝑅 = √3.52 + 36 

     =
√193

2
      M1 

 𝛼 = tan−1  (
3.5

6
) 

  = 30.25643 

  = 30.3°     M1 

 𝐵𝐷 =
√193

2
cos(𝜃 − 30.3°)   A1 
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(c) State the maximum length of BD and the corresponding value of 𝜃.  [2] 

𝑀𝑎𝑥 𝐵𝐷 =
√193

2
  

            = 6.94622   

  = 6.95 cm    B1 

 

Occurs when cos(𝜃 − 30.256°) = 1 

   (𝜃 − 30.256°) = 0° 

   𝜃 = 30.3°   B1 

 

(d) Find the value of 𝜃 when 𝐵𝐷 = 6 cm.      [2] 

 

6 =
√193

2
cos(𝜃 − 30.3°)  

cos(𝜃 − 30.3°) = 0.8637789    M1 

𝜃 − 30.25643 = 30.25643  

𝜃 = 60.5°      A1 

  

    

 

 

 

 

 

 

 

 

 

 

 

 

\ 
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6 A conical vessel, whose vertical angle is as shown in the diagram, has water poured 

into it at such a rate that after 𝑡 seconds, the depth of the water is  cm and the radius 

of the water surface is r cm. 

   

 

 

 

 

 

 

 

 

 

 (a)    Show that the volume of water, 𝑉 =
𝜋𝑥3

9
 cm3.     [3] 

 tan 30° =
𝑟

𝑥
 

 𝑟 =
√3

3
𝑥      B1 

  

 𝑉 =
1

3
𝜋𝑟2ℎ 

     =
1

3
𝜋 (

√3

3
𝑥)

2

𝑥     M1 

     =
𝜋𝑥3

9
   cm3     A1 

 

 

 

 

 

 

 

 

 

 

30

x
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(b)  Given further that the volume of water, 𝑉 = 8𝑡, find the rate of which the water 

level is increasing after 3 seconds.      [5] 

 

 When 𝑡 = 3, 

 𝑉 = 24       

 24 =
𝜋𝑥3

9
 

 𝑥 =
6

√𝜋
3       M1 

 

𝑑𝑉

𝑑𝑡
= 8       M1 

 
𝑑𝑉

𝑑𝑥
=

𝜋𝑥2

3
      M1 

 
𝑑𝑉

𝑑𝑥
×

𝑑𝑥

𝑑𝑡
=

𝑑𝑉

𝑑𝑡
     M1 

 Sub 𝑥 =
6

√𝜋
3 ,  

 
𝑑𝑥

𝑑𝑡
=

24

𝜋𝑥2 

  = 0.455 cm/s     A1 
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7 Show that 2𝑛+5 + 2𝑛+3 + 81(2𝑛) is a multiple of 11.     [3] 

2𝑛+5 + 2𝑛+3 + 81(2𝑛)  

= 25(2𝑛) + 23(2𝑛) + 81(2𝑛)     M1 

= (2𝑛)(32 + 8 + 81)  

= (2𝑛)(121)       M1 

= (112)(2𝑛)       A1 

 

8. Evaluate ∫ (
1

2
sin 3𝑥 − cos2 𝑥)  𝑑𝑥

𝜋

3
0

, correct to 2 decimal places.   [4] 

 

∫ (
1

2
sin 3𝑥 − cos2 𝑥)  𝑑𝑥

𝜋

3
0

  

= ∫ (
1

2
sin 3𝑥 − (

cos 2𝑥+1

2
))  𝑑𝑥

𝜋

3
0

     M1 

= [−
cos 3𝑥

6
−

sin 2𝑥

4
−

𝑥

2
]

0

𝜋

3
      M2 

=
1

6
−

√3

8
−

𝜋

6
− (−

1

6
)  

= −0.41        A1 

 

9. A particle moves in a straight line and its initial velocity is 21 cm/s. After t seconds, its 

acceleration, a cm/s2, is given by a = 2t – 10. When t = 0, its displacement, s cm, from a 

fixed point O is 4 cm.  

Find the distance travelled by the particle during the first 7 seconds.   [8] 

 

𝑣 = ∫ 𝑎 𝑑𝑡  

𝑣 = 𝑡2 − 10𝑡 + 𝑐       M1 

 

When 𝑡 = 0, 𝑣 = 21 

𝑐 = 21  

 

𝑣 = 𝑡2 − 10𝑡 + 21       M1 

 

𝑠 = ∫ 𝑣 𝑑𝑡  

𝑠 =
𝑡3

3
− 5𝑡2 + 21𝑡 + 𝑐1      M1 
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When 𝑡 = 0, 𝑠 = 4 

𝑐1 = 4  

 

𝑠 =
𝑡3

3
− 5𝑡2 + 21𝑡 + 4      M1  

 

Turning point 

𝑣 = 0         

𝑡2 − 10𝑡 + 21 = 0       M1 

𝑡 = 3 𝑠    𝑡 = 7 𝑠     A1 

 

When 𝑡 = 3 𝑠 

 

𝑠 = 9 − 45 + 63 + 4  

𝑠 = 31 𝑐𝑚         

 

When 𝑡 = 7 𝑠 

𝑠 =
343

3
− 245 + 147 + 4  

𝑠 =
61

3
 𝑐𝑚         

 

Distance travelled in the first 7 seconds 

= (31 − 4) + (31 −
61

3
)      M1 

=
113

3
 𝑐𝑚        A1 
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10.  

 

 

 

 

 

 

 

 

 

 

 

 

The diagram shows part of the curve 𝑦 = 3𝑒−
1

2
𝑥 − 6 which crosses the x-axis at P and 

the y-axis at Q. The normal to the curve at Q meets the x-axis at R. Find 

(a) the equation of the normal,       [4] 

 

When 𝑥 = 0, 

 

𝑦 = −3        M1 

𝑑𝑦

𝑑𝑥
= −

3

2
𝑒−

1

2
𝑥
  

𝑑𝑦

𝑑𝑥
= −

3

2
        M1 

 

Gradient of normal =
2

3
      A1 

 

Equation of normal: 

𝑦 + 3 =
2

3
(𝑥 − 0)  

𝑦 =
2

3
𝑥 − 3       A1 

 

 

 

 

Q 

P 

𝑦 = 3𝑒−
1
2

𝑥 − 6 

x 

y 

O R 
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(b) the area of the shaded region.       [6] 

 

when 𝑦 = 0, 

 

3𝑒−
1

2
𝑥 − 6 = 0  

𝑒−
1

2
𝑥 = 2  

−
1

2
𝑥 = ln 2  

𝑥 = − ln 4   

𝑃 = (− ln 4 , 0)       M1 

 

2

3
𝑥 − 3 = 0  

𝑥 =
9

2
  

𝑅 = (
9

2
, 0)        M1 

𝑄 = (0, −3)       M1 

 

Area of shaded region  

= |∫ (3𝑒−
1

2
𝑥 − 6)  𝑑𝑥

0

− ln 4
| +

1

2
(

9

2
) (3)    M1 

= |[
3𝑒

−
1
2

𝑥

−
1

2

− 6𝑥]
− ln 4

0

| +
27

4
  

= |[−6𝑒−
1

2
𝑥 − 6𝑥]

− ln 4

0

| +
27

4
     M1 

= |[−6 + 12 − 6 ln 4]| +
27

4
  

= 9.07       A1  
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11. The function 𝑓 is defined, for 0 ≤ 𝑥 ≤ 2𝜋, by 𝑓(𝑥) = 1 − 2 cos 2𝑥. 

(a) State the period and amplitude of 𝑓.      [2] 

Period = 𝜋 

Amplitude = 2 

 

(b) Sketch the graph of 𝑦 = 𝑓(𝑥) for 0 ≤ 𝑥 ≤ 2𝜋.     [3] 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) On the same diagram in part (b), sketch the graph of 𝑦 =
4𝑥

𝜋
− 2.  [1] 

 

 

 

 

(d) Hence, state the number of solutions, 0 ≤ 𝑥 ≤ 2𝜋, to the equation  

2 cos 2𝑥 − 3 +
4𝑥

𝜋
= 0.        [1] 

 

 

 

 

 

 

 

0 

y 

x 



17 

 

12. The gradient function of a curve is given by 
𝑑𝑦

𝑑𝑥
= −

1

𝑥2 + 6 cos 3𝑥. The coordinates of 

the point 𝑃, which lies on the curve, is (
𝜋

2
 , 𝜋). A point 𝑄 exists such that the mid-point 

of 𝑃𝑄 is (
3

4
𝜋 , 2𝜋). Find 

(a) the coordinates of the point 𝑄,       [3] 

(
3

4
𝜋 , 2𝜋) = (

𝜋

2
+𝑥

2
 ,

𝜋+𝑦

2
)      M1 

3

4
𝜋 =

𝜋

2
+𝑥

2
     2𝜋 =

𝜋+𝑦

2
 

3𝜋

2
=

𝜋

2
+ 𝑥    𝑦 = 3𝜋 

𝑥 = 𝜋        A1    

 

Coordiantes of 𝑄 = (𝜋 , 3𝜋)    A1 

 

(b) the equation of the curve.        [2] 

𝑦 = ∫ (−
1

𝑥2 + 6 cos 3𝑥)  𝑑𝑥  

y =
1

𝑥
+ 2 sin 3𝑥 + 𝑐      M1 

 

When 𝑥 =
𝜋

2
 , 𝑦 = 𝜋 

𝜋 = 𝜋 − 2 + 𝑐  

𝑐 = 2  

 

Equation of curve: 

𝑦 =
1

𝑥
+ 2 sin 3𝑥 + 2      A1 

13.  Without using the calculator, evaluate the following trigonometric functions. 

(a) sin (𝑥 +
4𝜋

3
)         [2] 

= sin 𝑥 cos
4𝜋

3
+ cos 𝑥 sin

4𝜋

3
     M1 

= −
1

2
sin 𝑥 +

√3

2
cos 𝑥       A1 
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(b) cos 75°          [2] 

= cos(30° + 45°)  

= cos 30° cos 45° − sin 30° sin 45°  

=
√3

2
×

√2

2
−

1

2
×

√2

2
      M1 

=
√2(√3−1)

4
       A1 

 

(c) tan(𝜃 − 45°)         [2] 

=
tan 𝜃−tan 45°

1+tan 𝜃 tan 45°
       M1 

=
tan 𝜃−1

1+tan 𝜃
        A1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


