

RAFFLES INSTITUTION H2 Mathematics 9758 2023 Year 6 Term 3 Revision 6 (Summary and Tutorial)

Topic: Vectors 1 (Vector Algebra, Ratio Theorem, Scalar and Vector Product)

Summary for Vectors 1

Vector Algebra

With reference to an origin O(0, 0, 0), given points $A(a_1, a_2, a_3)$ and $B(b_1, b_2, b_3)$, we have the $\begin{pmatrix} a_1 \end{pmatrix} \begin{pmatrix} b_1 \end{pmatrix}$

corresponding (position vectors) expressed in column form $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

$$\mathbf{a} \pm \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \pm \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \\ a_3 \pm b_3 \end{pmatrix} \text{ and}$$
$$k\mathbf{a} = k \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} ka_1 \\ ka_2 \\ ka_3 \end{pmatrix} \text{ with } k \text{ a real number.}$$

The **magnitude** (or modulus) of a vector, $|\mathbf{a}|$, is the non-negative number

 $|\mathbf{a}| = \begin{vmatrix} a_1 \\ a_2 \\ a_3 \end{vmatrix} = \sqrt{a_1^2 + a_2^2 + a_3^2}$. This value is equal to the distance from *O* to *A*.

We say that **a** is parallel to **b**, denoted by **a** // **b**, if and only if $\mathbf{b} = \lambda \mathbf{a}$ for some $\lambda \in \mathbb{R} \setminus \{0\}$, that is, **b** is a (non-zero) scalar multiple of **a**.

- If $\lambda > 0$, then λa and a are in the same direction.
- If $\lambda < 0$, then $\lambda \mathbf{a}$ and \mathbf{a} are in **opposite** directions.

Points *A* and *B* have position vectors **a** and **b** respectively, relative to the origin *O*, such that $\mathbf{b} = \lambda \mathbf{a}$ for some $\lambda \in \mathbb{R} \setminus \{0\}$. We then say that the points *O*, *A* and *B* are **collinear**.

The **unit vector** in the **direction** of **a** denoted by $\hat{\mathbf{a}}$ is obtained by scaling **a** by $\frac{1}{|\mathbf{a}|}$, thus $\hat{\mathbf{a}} = \frac{1}{|\mathbf{a}|}\mathbf{a}$. The vectors $\begin{pmatrix} 1\\2\\-2 \end{pmatrix}$ and $\begin{pmatrix} -2\\-4\\4 \end{pmatrix}$ are parallel since $\begin{pmatrix} -2\\-4\\4 \end{pmatrix}$ is a scalar multiple of $\begin{pmatrix} 1\\2\\-2 \end{pmatrix}$ (k = -2) but are in opposite directions since k < 0. The points (-2, -4, 4), (0, 0, 0) and (1, 2, -2) are also said to be collinear. The magnitude of $\begin{pmatrix} 1\\2\\-2 \end{pmatrix}$ is $\sqrt{1^2 + 2^2 + (-2)^2} = 3$ so the unit vector in the direction of $\begin{pmatrix} 1\\2\\-2 \end{pmatrix}$ is $\frac{1}{3}\begin{pmatrix} 1\\2\\-2 \end{pmatrix}$

Let **a** and **b** be non-zero and **non-parallel** vectors: If $\lambda \mathbf{a} = \mu \mathbf{b}$ for some λ , $\mu \in \mathbb{R}$, then $\lambda = \mu = 0$. If $\alpha \mathbf{a} + \beta \mathbf{b} = s\mathbf{a} + t\mathbf{b}$ for some $\alpha, \beta, s, t \in \mathbb{R}$, then $\alpha = s, \beta = t$.

Note the importance of **non-parallel** vectors when comparing coefficients. Suppose $\mathbf{a} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ then $6\mathbf{a} + 2\mathbf{b} = 4\mathbf{a} + 3\mathbf{b}$ however we cannot "compare coefficients" of vectors \mathbf{a} and \mathbf{b} (note that \mathbf{a} is parallel to \mathbf{b}) as $6 \neq 4$ and $2 \neq 3$.

Ratio Theorem

Consider a triangle OAB with $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. So \mathbf{a} and \mathbf{b} are non-zero and **non-parallel** vectors. Let *P* be a point which divides *AB* in the ratio $\lambda : \mu$,

i.e.
$$\frac{AP}{PB} = \frac{\lambda}{\mu}$$
. If $\overrightarrow{OP} = \mathbf{p}$, then $\mathbf{p} = \frac{\mu \mathbf{a} + \lambda \mathbf{b}}{\lambda + \mu}$ (MF26)

Note that the Ratio Theorem is an immediate consequence of the addition of vectors. From diagram, $\mathbf{p} - \mathbf{a} = \frac{\lambda}{\lambda + \mu} (\mathbf{b} - \mathbf{a})$, rearranging we have $\mathbf{p} = \frac{\mu \mathbf{a} + \lambda \mathbf{b}}{\lambda + \mu}$. Sometimes, it is easier to use $\mathbf{p} - \mathbf{a} = \frac{\lambda}{\lambda + \mu} (\mathbf{b} - \mathbf{a})$ like the following example.

Points *A*, *B* and *P* have position vectors **a**, **b** and **p** respectively, relative to the origin *O*. Given that $\mathbf{a} = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 2 \\ 6 \\ -3 \end{pmatrix}$, find **p** if *P* lies on *AB* produced such that $\frac{AB}{AP} = \frac{2}{5}$. **Solution:** Easier to find directly, $\mathbf{p} - \mathbf{a} = \frac{5}{2}(\mathbf{b} - \mathbf{a})$ [DO NOT WRITE $\frac{\mathbf{b} - \mathbf{a}}{\mathbf{p} - \mathbf{a}} = \frac{2}{5}$. We cannot divide vectors] $\mathbf{p} = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} + \frac{5}{2} \begin{pmatrix} 2-2 \\ 6-2 \\ -3-5 \end{pmatrix} = \begin{pmatrix} 2 \\ 12 \\ -15 \end{pmatrix}$

Scalar (Dot) Product

Points A and B have position vectors **a** and **b** respectively, relative to the origin O. $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$ where $\theta = \angle AOB$.

Re-arranging,
$$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$
.

If vectors **a** and **b** are in the same direction then $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}|$, largest possible value.

If vectors **a** and **b** are in the **opposite direction** then $\mathbf{a} \cdot \mathbf{b} = -|\mathbf{a}||\mathbf{b}|$, smallest possible value.

Two non-zero vectors **a** and **b** are perpendicular, denoted by $\mathbf{a} \perp \mathbf{b}$, if and only if $\mathbf{a} \cdot \mathbf{b} = 0$. In particular, $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$ as \mathbf{i} , \mathbf{j} and \mathbf{k} are mutually perpendicular.

If
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, then $\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$.

Find the cosine of the angle between the vectors $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and determine if the angle is acute or obtuse.

Solution $\cos \theta = \frac{(2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}) \cdot (\mathbf{i} + 2\mathbf{j} - \mathbf{k})}{\sqrt{2^2 + 3^2 + 2^2} \sqrt{1^2 + 2^2 + (-1)^2}}$ $\cos \theta = \frac{2 - 6 - 2}{\sqrt{17} \sqrt{6}} = -\sqrt{\frac{6}{17}} < 0$ θ is an obtuse angle

Properties of Scalar Product

(i) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$

- (ii) $\mathbf{a} \cdot (\mathbf{b} \pm \mathbf{c}) = (\mathbf{a} \cdot \mathbf{b}) \pm (\mathbf{a} \cdot \mathbf{c})$
- (iii) $\lambda(\mathbf{a} \cdot \mathbf{b}) = (\lambda \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\lambda \mathbf{b})$
- (iv) $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \Leftrightarrow |\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$ note the relationship between the scalar product and the modulus

Given that
$$|\mathbf{a}| = 2$$
, $|\mathbf{b}| = 3$, $\mathbf{a} \cdot \mathbf{b} = -1$,

 (i) $(\mathbf{a} - \mathbf{b}) \cdot (2\mathbf{a} + \mathbf{b})$
 (ii) $(2\mathbf{a} - \mathbf{b}) \cdot (2\mathbf{a} + \mathbf{b})$
 $= 2\mathbf{a} \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{b} - 2\mathbf{b} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{b}$
 $= 4\mathbf{a} \cdot \mathbf{a} + 2\mathbf{a} \cdot \mathbf{b} - 2\mathbf{b} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{b}$
 $= 2|\mathbf{a}|^2 - \mathbf{a} \cdot \mathbf{b} - |\mathbf{b}|^2$
 $= 4|\mathbf{a}|^2 - |\mathbf{b}|^2$
 $= 2(2^2) - (-1) - 3^2$
 $= 4(2^2) - 3^2$
 $= 0$
 $= 7$

 (iii) $|\mathbf{a} - 2\mathbf{b}| = \sqrt{(\mathbf{a} - 2\mathbf{b}) \cdot (\mathbf{a} - 2\mathbf{b})} = \sqrt{\mathbf{a} \cdot \mathbf{a} - 2\mathbf{a} \cdot \mathbf{b} - 2\mathbf{b} \cdot \mathbf{a} + 4\mathbf{b} \cdot \mathbf{b}} = \sqrt{|\mathbf{a}|^2 - 4\mathbf{a} \cdot \mathbf{b} + 4|\mathbf{b}|^2} = \dots = 2\sqrt{11}$

Applications of Scalar Product

Points A and B have position vectors **a** and **b** respectively, relative to the origin O. Given that P is the point on the line OB such that $\overrightarrow{AP} \perp \overrightarrow{OB}$, it can be shown that

$$\overrightarrow{OP} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}\right) \frac{\mathbf{b}}{|\mathbf{b}|} = \left(\mathbf{a} \cdot \hat{\mathbf{b}}\right) \hat{\mathbf{b}}$$

P is the foot of perpendicular from *A* to the line *OB* and *P* is also the point on the line *OB* nearest to *A*.

Thus, the length of projection of vector **a** onto vector **b** is given by $|\overrightarrow{OP}| = |\mathbf{a} \cdot \hat{\mathbf{b}}|$.

Points A and B have position vectors **a** and **b** respectively, relative to the origin O.

Given that $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$, find the length of projection of **a onto vector b**. Find the position vector of the foot of the perpendicular from *A* to *OB*.

Solution $OP = \left| \mathbf{a} \cdot \hat{\mathbf{b}} \right| = \frac{\left| (2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}) \cdot (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \right|}{\sqrt{1^2 + 2^2 + (-1)^2}} = \frac{\left| 2 - 6 - 2 \right|}{\sqrt{6}} = \sqrt{6}$ $\overrightarrow{OP} = \left(\mathbf{a} \cdot \hat{\mathbf{b}} \right) \hat{\mathbf{b}} = -\left(\frac{6}{\sqrt{6}} \right) \frac{\mathbf{i} + 2\mathbf{j} - \mathbf{k}}{\sqrt{6}} = -\mathbf{i} - 2\mathbf{j} + \mathbf{k}$

If α, β and γ are the angles between **a** and the component vectors **i**, **j** and **k** respectively, then $\hat{\mathbf{a}} = \frac{1}{|\mathbf{a}|} \mathbf{a} = \left(\frac{a_1}{|\mathbf{a}|}, \frac{a_2}{|\mathbf{a}|}, \frac{a_3}{|\mathbf{a}|}\right) = (\cos \alpha, \cos \beta, \cos \gamma)$. Component of $\hat{\mathbf{a}}$ are referred to as the direction cosines.

Vector (Cross) Product

Let **a** and **b** be two non-zero vectors that are represented by OA and \overrightarrow{OB} respectively.

$$\mathbf{a} \times \mathbf{b} = (|\mathbf{a}|| \mathbf{b} |\sin \theta) \hat{\mathbf{n}}$$

where $\theta = \angle AOB$ is the angle between **a** and **b**, and $\hat{\mathbf{n}}$ is the unit vector perpendicular to both **a** and **b**.

It follows that

Two non-zero vectors **a** and **b** are **perpendicular** if and only if $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}|$. In particular, $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ and $\mathbf{k} \times \mathbf{i} = \mathbf{j}$.

Two non-zero vectors **a** and **b** are **parallel** if and only if $\mathbf{a} \times \mathbf{b} = \mathbf{0}$. In particular, $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}$.

Given that $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} - \mathbf{v}) = \mathbf{0}$, what can be deduced about the vectors \mathbf{u} and \mathbf{v} ?

Solution: $(u+v) \times (u-v) = 0$ $u \times u - u \times v + v \times u - v \times v = 0$ $0 + 2v \times u - 0 = 0$ $v \times u = 0$ u = 0 or v = 0 or $u \parallel v$

Properties of Vector Product

1. $\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a}).$

- 2. $|\mathbf{a} \times \mathbf{b}| = |\mathbf{b} \times \mathbf{a}| = |\mathbf{a}| |\mathbf{b}| |\sin \theta| \le |\mathbf{a}| |\mathbf{b}|.$
- 3. $\mathbf{a} \times (\mathbf{b} \pm \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \pm (\mathbf{a} \times \mathbf{c}).$
- 4. $\lambda(\mathbf{a} \times \mathbf{b}) = (\lambda \mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (\lambda \mathbf{b}).$
- 5. $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 0$ So $\mathbf{a} \times \mathbf{b} \perp \mathbf{a}$ and $\mathbf{a} \times \mathbf{b} \perp \mathbf{b}$.

Examples of how the properties are used

$$|(\mathbf{a} + 2\mathbf{b}) \times (3\mathbf{a} - \mathbf{b})| = |3\mathbf{a} \times \mathbf{a} - \mathbf{a} \times \mathbf{b} + 6\mathbf{b} \times \mathbf{a} - 2\mathbf{b} \times \mathbf{b}|$$

= $|\mathbf{0} + \mathbf{b} \times \mathbf{a} + 6\mathbf{b} \times \mathbf{a} + \mathbf{0}|$
= $7|\mathbf{b} \times \mathbf{a}|$
 $|(\alpha \mathbf{a} + \beta \mathbf{b}) \times (\alpha \mathbf{a} - \beta \mathbf{b})| = |\alpha^2 \mathbf{a} \times \mathbf{a} - \alpha\beta \mathbf{a} \times \mathbf{b} + \alpha\beta \mathbf{b} \times \mathbf{a} - \beta^2 \mathbf{b} \times \mathbf{b}|$
= $\alpha\beta |\mathbf{0} + \mathbf{b} \times \mathbf{a} + \mathbf{b} \times \mathbf{a} + \mathbf{0}|$
= $2\alpha\beta |\mathbf{b} \times \mathbf{a}|$

Let $A(a_1, a_2, a_3)$ and $B(b_1, b_2, b_3)$ be two points in three-dimensional space and let the position vectors of A and B with respect to the origin O be **a** and **b** respectively.

Then vector (cross) product $\mathbf{a} \times \mathbf{b}$, is the vector given by

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ -(a_1 b_3 - a_3 b_1) \\ a_1 b_2 - a_2 b_1 \end{pmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$
(MF26)

Applications of Vector Product

Let the points A and B have position vectors **a** and **b** with respect to the origin O, and let θ be the angle between **a** and **b**. Let C be the point such that OACB is a parallelogram.

Then we have

- (1) Area of triangle *OAB* is $\frac{1}{2} |\mathbf{a} \times \mathbf{b}|$.
- (2) Area of parallelogram OACB is $|\mathbf{a} \times \mathbf{b}|$.
- (3) Distance from *B* to *OA* is $|\mathbf{b} \times \hat{\mathbf{a}}|$.

(Recall the length of projection of \overrightarrow{OB} onto \overrightarrow{OA} is $|\mathbf{b} \cdot \hat{\mathbf{a}}|$)

Revision Tutorial Questions

1 For each question, indicate the letter corresponding to the correct answer.

		Answer
Ι	The modulus of the vector $6\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$ is	
	(a) $\sqrt{23}$ (b) $\sqrt{11}$ (c) 1 (d) 49 (e) 7	
II	The unit vector in the direction of the vector $-\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ is	
	(a) $-\frac{1}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}$ (b) $\frac{1}{3}\mathbf{i} - \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}$ (c) $\pm \left(\frac{1}{3}\mathbf{i} - \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}\right)$	
	(d) $-\frac{1}{5}\mathbf{i} + \frac{2}{5}\mathbf{j} - \frac{2}{5}\mathbf{k}$ (e) $-\frac{1}{9}\mathbf{i} + \frac{2}{9}\mathbf{j} - \frac{2}{9}\mathbf{k}$	
III	If $\mathbf{a} = 2\mathbf{i} - \mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} + \mathbf{j}$ then $\mathbf{a} \cdot \mathbf{b}$ is	
	(a) $4i - j$ (b) 3 (c) 0 (d) $4i^2 - j^2$ (e) 5	
IV	If $\mathbf{a} = \mathbf{i} + \mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} - \mathbf{j}$ then $\mathbf{a} \times \mathbf{b}$ is	
	(a) $2i - j$ (b) \emptyset (c) $3k$ (d) $-3k$ (e) 1	
V	It is given that the points A, B and C are collinear. Referred to the origin O,	
	$\overrightarrow{OA} = \mathbf{i} + \mathbf{j}, \ \overrightarrow{OB} = 2\mathbf{i} - \mathbf{j} + \mathbf{k} \ and \ \overrightarrow{OC} = 3\mathbf{i} + a\mathbf{j} + b\mathbf{k}.$ Find a and b.	
	(a) $a = -3, b = 2$ (b) $a = 3, b = -2$ (c) $a = 0, b = 1$	
	(d) $a = -1, b = 0$ (e) $a = 6, b = -1$	
VI	It is given that the points A, B and C are collinear. If $\mathbf{a} = -2\mathbf{b} + 3\mathbf{c}$ then C divides	
	<i>AB</i> in the ratio (a) 1:2 (b) 2:3 (c) 3:2 (d) -2:3 (e) 2:1	
VII	The angle between the vectors $\begin{pmatrix} -4 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is given by	
	(a) $\cos^{-1}(0)$ (b) $\cos^{-1}(1)$ (c) $\cos^{-1}\left(\frac{\sqrt{2}}{10}\right)$ (d) $\sin^{-1}\left(\frac{-1}{5\sqrt{2}}\right)$ (e) $\cos^{-1}\left(\frac{-1}{5\sqrt{2}}\right)$	
VIII	a , b and c are the position vectors of the vertices of a triangle. The area of the triangle can be expressed as	
	$ (a) (b-a) \times (c-a) $ (b) $\frac{1}{2} b \times c $ (c) $\frac{1}{2} (b-a) \times (c-b) $	
	$ \mathbf{(d)} \ \frac{1}{2} \mathbf{b} - \mathbf{a} \times \mathbf{c} - \mathbf{a} \qquad \qquad \mathbf{(e)} \ (\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) $	
IX	Given vectors a and b , and scalar λ , which statement is false in general.	
	$ (a) \mathbf{a} \times \mathbf{a} = 0 \qquad (b) \lambda \mathbf{a} \cdot \mathbf{b} = \lambda \mathbf{a} \cdot \mathbf{b} \qquad (c) \mathbf{a} \cdot (\mathbf{b} \times \mathbf{a}) = 0 $	
	(d) $(\mathbf{a}-\mathbf{b})\times(\mathbf{a}+\mathbf{b})=2\mathbf{a}\times\mathbf{b}$ (e) $(\mathbf{a}+\mathbf{b})\cdot(\mathbf{a}-\mathbf{b})= \mathbf{a} ^2- \mathbf{b} ^2$	

(a) (d)	All of the above (2) and (3) only	(b) (e)	(1) and (5) only None of the above	(c)	(2), (3) and (4) only	
(5)	$ \mathbf{a} = \mathbf{b} $					
(4)	The points O, A and	d <i>B</i> are c	ollinear.			
(3)	Either a or b (or both) are the zero vector.					
(2)	a and b are parallel					
(1)	a and b are perpend	licular				
Whic	th of the following con	nditions	below imply that $(\mathbf{a} - \mathbf{b})$	b)×(a	$\mathbf{a} + \mathbf{b} = 0 ?$	
Referred to the origin O , the points A and B have position vectors a and b respectively.						

Answer Key

Ι	II	III	IV	V	VI	VII	VIII	IX	Χ
(e)	(a)	(b)	(d)	(a)	(e)	(e)	(c)	(b)	(c)

Source: ACJC Prelim 9758/2018/01/Q3(b)

2 Referred to the origin *O*, points *A*, *B* and *C* have position vectors **a**, **b** and **c** respectively, where **a** is a unit vector, $|\mathbf{b}| = 3$, $|\mathbf{c}| = \sqrt{3}$ and angle *AOC* is $\frac{\pi}{6}$ radians. Given that $3\mathbf{a} + \mathbf{c} = k\mathbf{b}$ where $k \neq 0$, by considering $(3\mathbf{a} + \mathbf{c}) \cdot (3\mathbf{a} + \mathbf{c})$, find the exact values of *k*. [4]

	Solution
2	$(3\mathbf{a} + \mathbf{c}) \cdot (3\mathbf{a} + \mathbf{c}) = 9\mathbf{a} \cdot \mathbf{a} + 3\mathbf{a} \cdot \mathbf{c} + 3\mathbf{c} \cdot \mathbf{a} + \mathbf{c} \cdot \mathbf{c}$
	$(3\mathbf{a} + \mathbf{c}) \cdot (3\mathbf{a} + \mathbf{c}) = 9\mathbf{a} \cdot \mathbf{a} + 6\mathbf{a} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{c}$
	$k\mathbf{b} \cdot k\mathbf{b} = 9\mathbf{a} \cdot \mathbf{a} + 6\mathbf{a} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{c}$
	$k^{2} \mathbf{b} ^{2} = 9 \mathbf{a} ^{2} + 6 \mathbf{a} \mathbf{c} \cos \frac{\pi}{6} + \mathbf{c} ^{2}$
	$k^{2} \left \mathbf{b} \right ^{2} = 9(1) + 6(1) \left(\sqrt{3} \right) \cos \frac{\pi}{6} + \left(\sqrt{3} \right)^{2}$
	$k^{2}(3)^{2} = 21$
	$k = \pm \frac{\sqrt{21}}{3}$

Source : PJC Prelim 9758/2018/02/Q1

3 Referred to the origin *O*, points *A* and *B* have position vectors **a** and **b** respectively. The point *C* lies on *OA* produced and is such that $OC = \lambda OA$, where $\lambda > 1$.

The point *D* lies on *OB*, between *O* and *B*, such that \overrightarrow{AD} is perpendicular to \overrightarrow{OB} . It is given that $|\mathbf{a}| = 4$, $|\mathbf{b}| = 8$ and $\angle AOB = 60^{\circ}$.

(i) Show that
$$\overrightarrow{OD} = \frac{1}{4}\mathbf{b}$$
. [2]

(ii) Show that the vector equation of the line *BC* can be written as $\mathbf{r} = \lambda \mu \mathbf{a} + (1 - \mu) \mathbf{b}$, where μ is a parameter. [2]

The point *E* lies on the line *BC*.

(iii) Find the values of μ , in terms of λ , such that the area of triangle *ODE* is $\sqrt{300}$. [4]

	Solution
3(i)	Method 1:
	$\overrightarrow{OD} = \left(4\cos 60^\circ\right)\hat{\mathbf{b}}$
	$= \left(4\cos 60^\circ\right) \frac{\mathbf{b}}{ \mathbf{b} }$
	$=(2)\frac{\mathbf{b}}{8}$
	$=\frac{1}{4}\mathbf{b}$ (shown)
	Method 2:
	$\overrightarrow{OD} = \left \mathbf{a} \cdot \hat{\mathbf{b}} \right \hat{\mathbf{b}}$
	$= \left \mathbf{a} \cdot \frac{\mathbf{b}}{ \mathbf{b} } \right \frac{\mathbf{b}}{ \mathbf{b} }$
	$=\frac{1}{\left \mathbf{b}\right ^{2}}\left \mathbf{a}\cdot\mathbf{b}\right \mathbf{b}$
	$=\frac{1}{\left \mathbf{b}\right ^{2}}\left \mathbf{a}\right \left \mathbf{b}\right \left \cos 60^{\circ}\right \mathbf{b}$
	$=\frac{1}{8}(4)\left(\frac{1}{2}\right)\mathbf{b}$
	$=\frac{1}{4}\mathbf{b}$ (shown)
	Method 3:

	$\overrightarrow{AD} \bullet \overrightarrow{OB} = 0$
	$\left(\overrightarrow{OD} - \overrightarrow{OA}\right) \cdot \overrightarrow{OB} = 0$
	$\overrightarrow{OD} \bullet \overrightarrow{OB} - \overrightarrow{OA} \bullet \overrightarrow{OB} = 0$
	$\left \overrightarrow{OD}\right \left \overrightarrow{OB}\right = \left \overrightarrow{OA}\right \left \overrightarrow{OB}\right \cos 60^{\circ}$
	$\left \overrightarrow{OD}\right = 4\cos 60^\circ = 2$
	Hence, $\overrightarrow{OD} = \frac{2}{8}\overrightarrow{OB} = \frac{1}{4}\mathbf{b}$ (Shown)
(ii)	$\overrightarrow{BC} = \lambda \mathbf{a} - \mathbf{b}$
	Equation of line <i>BC</i> : $\mathbf{r} = \mathbf{b} + \mu (\lambda \mathbf{a} - \mathbf{b})$
	$\mathbf{r} = \lambda \mu \mathbf{a} + (1 - \mu) \mathbf{b}$ (shown)
(iii)	Area of $\triangle ODE = \frac{1}{2} \left \overrightarrow{OD} \times \overrightarrow{OE} \right = \sqrt{300}$
	$\frac{1}{2} \left \frac{1}{4} \mathbf{b} \times \left[\lambda \mu \mathbf{a} + (1 - \mu) \mathbf{b} \right] \right = \sqrt{300}$
	$\frac{1}{8} \left \mathbf{b} \times \lambda \mu \mathbf{a} \right = \sqrt{300}$
	$\lambda \mathbf{b} \times \mu \mathbf{a} = 8\sqrt{300} \text{ (since } \lambda > 0 \text{)}$
	$\lambda \left \mu \right \left \mathbf{b} \right \left \mathbf{a} \right \sin 60^{\circ} \right = 8\sqrt{300}$
	$\lambda \mu (8)(4)\left(\frac{\sqrt{3}}{2}\right) = 8\sqrt{300}$
	$ \mu = \frac{5}{\lambda}$
	$\mu = \frac{5}{\lambda} \text{ or } \mu = -\frac{5}{\lambda}$

Source: EJC Prelim 9758/2018/01/Q5

- 4 Referred to the origin *O*, the points *P* and *Q* have position vectors **p** and **q** where **p** and **q** are non-parallel, non-zero vectors. Point *R* is on *PQ* produced such that $PQ:QR=1:\lambda$. Point *M* is the mid-point of *OR*.
 - (i) Find the position vector of R in terms of λ , **p** and **q**. [1]

[4]

F is a point on OQ such that F, P and M are collinear.

(ii) Find the ratio OF:FQ, in terms of λ .

	Solution	
4(i)	By the ratio theorem,	

$$\overline{OQ} = \frac{\overline{OR} + \lambda \overline{OP}}{1 + \lambda}$$

$$\overline{OR} = (1 + \lambda)\mathbf{q} - \lambda\mathbf{p}$$
(ii) Since the point *F* lies on line *OQ*, $\overline{OF} = t\mathbf{q}$, for some $t \in \mathbb{R}$.

$$\overline{PM} = \overline{OM} - \overline{OP}$$

$$= \frac{1}{2}\overline{OR} - \mathbf{p}$$

$$= \frac{(1 + \lambda)}{2}\mathbf{q} - \frac{\lambda}{2}\mathbf{p} - \mathbf{p}$$

$$= \frac{(1 + \lambda)}{2}\mathbf{q} - (\frac{\lambda}{2} + 1)\mathbf{p}$$
Since the point *F* also lies on line *PM*,
 $\overline{OF} = \mathbf{p} + s\overline{PM}$, for some $s \in \mathbb{R}$.

$$= \mathbf{p} + s \left[\frac{(1 + \lambda)}{2}\mathbf{q} - (\frac{\lambda}{2} + 1)\mathbf{p} \right]$$

$$= \left(1 - \frac{s\lambda}{2} - s\right)\mathbf{p} + \frac{s(1 + \lambda)}{2}\mathbf{q}$$
Since **p** and **q** are non-parallel & non-zero vectors, comparing coefficients of **p** and
q against $\overline{OF} = t\mathbf{q}$, we have

$$1 - \frac{s\lambda}{2} - s = 0$$

$$s \left(\frac{\lambda}{2} + 1\right) = 1$$

$$s = \frac{1}{\frac{\lambda}{2} + 1} = \frac{2}{\lambda + 2}$$

$$\overline{OF} = \frac{s(1 + \lambda)}{2}\mathbf{q} = \frac{2}{\lambda + 2} \left(\frac{1 + \lambda}{2}\right)\mathbf{q}$$

$$= \frac{1 + \lambda}{2 + \lambda}\mathbf{q} = \frac{1 + \lambda}{2 + \lambda}\overline{OQ}$$
Thus, $OF : FQ = 1 + \lambda : 1$

Source: MI Prelim 9758/2018/02/Q4

- 5 Relative to the origin *O*, the position vectors of points *A*, *B* and *C* are **a**, **b** and **c** respectively. It is given that **a** and **b a** are perpendicular and *C* lies on *AB* produced such that AC:AB = 4:3.
 - (i) If **a** is a unit vector, show that $|\mathbf{b}| > 1$. [3]

Given further that
$$|\mathbf{b}| = 2$$
, find the angle between \mathbf{a} and \mathbf{b} . [1]

- (ii) The direction cosines of **b** are 0.6, λ , μ and **b** is perpendicular to the *y*-axis. Find
 - (a) the angle **b** makes with the *x*-axis, [1]
 - (b) λ and μ . [2]
- (iii) By expressing **c** in terms of **a** and **b**, show that $|\mathbf{c} \cdot \mathbf{a}| = \mathbf{a} \cdot \mathbf{a}$. [3]

Hence state the length of projection of \mathbf{c} onto \mathbf{a} in terms of \mathbf{a} . [1]

(iv) Give a geometrical interpretation of $|\mathbf{c} \times \mathbf{a}|$ and hence evaluate $\frac{|\mathbf{c} \times \mathbf{a}|}{|\mathbf{b} \times \mathbf{a}|}$. [2]

	Solution
5(i)	$\mathbf{a} \perp \mathbf{b} - \mathbf{a} \implies \mathbf{a} \cdot (\mathbf{b} - \mathbf{a}) = 0$
	$\Rightarrow \mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{a} = \mathbf{a} ^2 = 1 \text{ (since } \mathbf{a} = 1\text{)}$
	\Rightarrow $ \mathbf{a} \mathbf{b} \cos\theta = 1$ where θ is the angle between \mathbf{a} and \mathbf{b}
	$\Rightarrow \cos \theta = \frac{1}{ \mathbf{b} } < 1 \Rightarrow \mathbf{b} > 1. \text{ (shown)}$
	$ \mathbf{b} = 2 \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ}.$
(ii)	Let α be the required angle.
(a)	$\cos\alpha = 0.6 \Rightarrow \alpha = \cos^{-1} 0.6 = 53.1^{\circ}. (1 \text{ d.p.})$
(ii)	$\lambda = \cos 90^{\circ} = 0.$
(b)	$0.6^2 + 0^2 + \mu^2 = 1 \Longrightarrow \mu^2 = 1 - 0.36 = 0.64 \Longrightarrow \mu = \pm 0.8.$
(iii)	By Ratio Theorem, $\mathbf{b} = \frac{\mathbf{a} + 3\mathbf{c}}{\Rightarrow} \mathbf{c} = \frac{4\mathbf{b} - \mathbf{a}}{\mathbf{c}}$.
	4 3
	$\begin{vmatrix} \mathbf{c} \cdot \mathbf{a} \end{vmatrix} = \left \left(\frac{4\mathbf{b} - \mathbf{a}}{3} \right) \cdot \mathbf{a} \right = \left \frac{4}{3} (\mathbf{b} \cdot \mathbf{a}) - \frac{1}{3} (\mathbf{a} \cdot \mathbf{a}) \right $ $= \left \frac{4}{2} (\mathbf{a} \cdot \mathbf{a}) - \frac{1}{2} (\mathbf{a} \cdot \mathbf{a}) \right \text{ (from (i))}$
	$= \mathbf{a} \cdot \mathbf{a} = \mathbf{a} ^2 = \mathbf{a} ^2 = \mathbf{a} \cdot \mathbf{a}. \text{ (shown)}$
	Required length = $\frac{ \mathbf{c} \cdot \mathbf{a} }{ \mathbf{a} } = \frac{\mathbf{a} \cdot \mathbf{a}}{ \mathbf{a} } = \frac{ \mathbf{a} ^2}{ \mathbf{a} } = \mathbf{a} .$
(iv)	$ \mathbf{c} \times \mathbf{a} = \text{Twice the area of triangle } OAC$
	$ \mathbf{b} \times \mathbf{a} =$ Twice the area of triangle $OAB = (AB)h$, where h is the height of triangle
	OAB with AB as the base.
	Since A, B and C are collinear, $ \mathbf{c} \times \mathbf{a} = (AC)h$.
	Hence, $\frac{ \mathbf{c} \times \mathbf{a} }{ \mathbf{b} \times \mathbf{a} } = \frac{(AC)h}{(AB)h} = \frac{AC}{AB} = \frac{4}{3}.$

Source: SAJC Prelim 9758/2018/01/Q6

6 Relative to the origin *O*, the position vectors of points *A* and *B* are **a** and **b** respectively, where **a** and **b** are non-zero and non-parallel vectors.

The point *C* with position vector **c** lies on the line segment *AB* such that *AC* : *CB* is $\lambda : 1 - \lambda$. It is given that **b** is a unit vector, $|\mathbf{a}| = \frac{4}{3}$ and the angle formed between *OA* and *OB* is 120°.

- (i) Find the value of λ such that the points O, A and C form a right angle AOC. [4]
- (ii) Find **m**, the position vector of M, the midpoint of AC, in terms of **a** and **b**. [2]

A circle is drawn with AC as its diameter and O is a point on the circumference of the circle drawn.

- (iii) Determine if *OB* is a tangent to the circle described above. [3]
- (iv) Give a geometrical interpretation of $|\mathbf{b} \cdot \mathbf{m}|$. Hence, explain $(\mathbf{b} \cdot \mathbf{m})\mathbf{b}$ in terms of its magnitude and direction. [2]

	$\mathbf{c} \bullet \mathbf{a} = 0$
	$\left[\lambda \mathbf{b} + (1 - \lambda)\mathbf{a}\right] \bullet \mathbf{a} = 0$
	$\lambda \mathbf{b} \bullet \mathbf{a} + (1 - \lambda) \mathbf{a} \bullet \mathbf{a} = 0$
	$\lambda \left[\frac{4}{3} \times 1 \times \cos 120^{\circ} \right] + (1 - \lambda) \mathbf{a} ^2 = 0, \text{ since } \mathbf{a} = \frac{4}{3}$
	$\lambda \left[\frac{4}{3} \times \left(-\frac{1}{2} \right) \right] + \left(1 - \lambda \right) \left(\frac{4}{3} \right)^2 = 0$
	$\left(-\frac{2}{3}\right)\lambda + \frac{16}{9}\left(1-\lambda\right) = 0$
	$-\frac{2}{3}\lambda + \frac{16}{9} - \frac{16}{9}\lambda = 0$
	$\frac{22}{2}\lambda = \frac{16}{2}$
	16 8
	$\lambda = \frac{1}{22} = \frac{3}{11}$
(ii)	$\mathbf{c} = \frac{3}{2}\mathbf{a} + \frac{8}{2}\mathbf{b}$
	By Mid-point Theorem, find $OM = \mathbf{m}$, where M is the mid-point of AC.
	$OM = \mathbf{m}$
	$=\frac{\mathbf{c}+\mathbf{a}}{2}$
	$= \frac{1}{2} \left[\frac{3}{11} \mathbf{a} + \frac{8}{11} \mathbf{b} + \mathbf{a} \right]$
	$=\frac{1}{2}\left(\frac{14}{11}\mathbf{a}+\frac{8}{11}\mathbf{b}\right)$
	$=\frac{7}{11}\mathbf{a}+\frac{4}{11}\mathbf{b}$
(iii)	$\mathbf{m} \bullet \mathbf{b} = \left(\frac{7}{11}\mathbf{a} + \frac{4}{11}\mathbf{b}\right) \bullet \mathbf{b}$
	$=\frac{7}{11}\mathbf{a} \bullet \mathbf{b} + \frac{4}{11}\mathbf{b} \bullet \mathbf{b}$
	$=\frac{7}{11}\mathbf{a} \cdot \mathbf{b} + \frac{4}{11} \mathbf{b} ^2$
	$=\frac{7}{11}\left(-\frac{2}{3}\right)+\frac{4}{11}(1)^{2}$
	$=-\frac{2}{33}\neq 0$
	Since the vector b is not perpendicular to m , where OM is the radius of the circle, OB is
	not a tangent to the circle.
(iv)	$ \mathbf{b} \cdot \mathbf{m} $ is the length of projection of \mathbf{m} on \mathbf{b} .

$(\mathbf{b} \bullet \mathbf{m})\mathbf{b}$ is a vector with magnitude $ \mathbf{b} \bullet \mathbf{m} $, which is the length of projection of \mathbf{m} on
b . Moreover, it is in the opposite direction of b as $\mathbf{m} \cdot \mathbf{b} = -\frac{2}{33} < 0$.