

HWA CHONG INSTITUTION 2017 C1 H2 CHEMISTRY PROMOTIONAL EXAM SUGGESTED SOLUTIONS

Paper 3

1 (a) (i) cis-trans isomerism [1]

- (ii) Adjacent p orbitals on the first 4 carbons of hexa-1,3-diene / 4 overlapping p orbitials in hexa-1,3-diene [½] allows for delocalisation of π electrons across these carbons [½]. This causes the bond energy of C=C double bonds in hexa-1,3-diene to be lower at 531 kJ mol⁻¹ as compared to 608 kJ mol⁻¹ for hexa-1,5-diene.
- (b) (i) heterogeneous catalyst [1]

(-1/2 m per mistake)

The platinum catalyst <u>provides an alternative reaction pathway which</u> requires a lower activation energy (E_a') than the uncatalysed reaction (E_a). [1]

As represented by the shaded areas in the Boltzmann diagram, there is an increase in the fraction/proportion/number of reactant particles that have kinetic energy greater than or equal to activation energy E_s' [½]. This increases the frequency of effective collisions and rate constant increases. [½]

(c) (i)
$$\Delta S_{\text{vaporisation}} = \Delta H_{\text{vaporisation}} + \text{boiling point}$$

= +28.3 ÷ (60 + 273) [1]
= +0.0850 kJ mol⁻¹ K⁻¹ [1]

(ii) $CH_2=CHCH_2CH_2CH=CH_2(I) + 2H_2(g) \rightarrow CH_3CH_2CH_2CH_2CH_2CH_3(I)$ [1]

$$\Delta H^{o}_{\text{hydrogenation}} = \Delta H_{\text{vap(hexa-1,5-diene)}} + 2BE_{\text{(C=C)}} + 2BE_{\text{(H-H)}} - [2BE_{\text{(C-C)}} + 4BE_{\text{(C-H)}}] - \Delta H_{\text{vap(hexane)}} = +28.3 + 2(608) + 2(436) - 2(350) - 4(410) - 28.9$$
 [1]
$$= -252.6 \text{ kJ mol}^{-1}$$
 [1]

 $CH_2=CHCH_2CH=CH_2 + 10[O] \rightarrow HO_2C(CH_2)_2CO_2H + 2CO_2 + 2H_2O[1]$

- 2 (a) (i) The order of reaction with respect to a reactant is the power on its concentration term in the rate equation. The order of reaction must be determined experimentally. [1]
 - (ii) When the reaction is complete, there is no more NaOH present. Therefore, no NaOH will neutralise the HC/.

 nHCI = 0.00750 × 0.020 = 1.5 × 10⁻⁴ mol = nNH3

 Vn, Volume of NH3 used = 1.5 × 10⁻⁴ / 0.010 = 0.015 dm³ = 15.0 cm³ [1]
 - (iii) It is directly proportional to remaining [NaOH] left in the mixture. [1]

(V _n	– V _t) / cm³
Experiment 1	Experiment 2
9.10	8.20
8.20	6.40
7.30	4.60
6.40	2.80

(v) I:
Since the graph is a decreasing <u>straight line</u>, the rate is independent of [NaOH]. [½] Therefore, the order with respect to NaOH is 0. [½]

II:
Gradient of graph in experiment 1 = -0.0600
Gradient of graph in experiment 2 = -0.120

initial rate in experiment 1 / initial rate in experiment 2 = 0.0600 / 0.120 = 0.5 [1 for any reasonable working]

When the concentration of A was halved from 0.20 mol dm $^{-3}$ to 0.10 mol dm $^{-3}$ with [NaOH] kept constant, the initial rate was also halved, therefore the rate is directly proportional to [A] and the order with respect to A is $\underline{1}$. [1]

- (vi) Rate = k[A] [1] Units of $k = min^{-1}$ or s^{-1} [1]
- (vii) It will not work because while the mixture is being titrated with HC/, the NaOH will continue to react with A/ reaction has not stopped/ reaction is still ongoing, hence the titration will not give accurate results. [1]

There is intramolecular hydrogen bonding in E which is lacking in the other two. Hence there is less extensive intermolecular hydrogen bonding and the melting point is lower for E. [1]

3 (a) (i) First ionisation energy of the elements in Group 13 <u>decreases</u> [½] down the group.

Down the group, number of <u>quantum shells increases</u> despite <u>Increasing</u> nuclear charge. [½]

The <u>outermost electrons</u> are <u>further away from the nucleus / electrostatics forces of attraction between the nucleus and the outermost electron is weaker. [½]</u>

Less energy is required to remove this electron [1/2]

(ii) [1m for 2s orbital] [1m for 2p_x, 2p_y, 2p_z orbitals]

(b) (i) A/F₃ has a giant ionic lattice [1/2] with strong electrostatic forces of attraction / ionic bonds between A/P+ and F- ions [1/2].

A/C/₃ has a <u>simple molecular structure</u> [1/2] with (<u>weak) dispersion forces</u> [1/2] between molecules.

A <u>larger amount of energy [½]</u> is required to overcome the <u>stronger</u> [½] ionic bonds in A/F₃, giving it a high melting point.

(OR

lonic bonds are much stronger than dispersion forces, therefore more energy is required to break these bonds and the melting point of A/F₃ is much higher.)

(ii) [energy cycle 3m, deduct ½ for every mistake]

$$AJ^{3*}(g) + 3F^{-}(g)$$

$$-4690 + 3(-506)$$

$$= -6208$$

$$-1510$$

$$AJ^{3*}(aq) + 3F^{-}(aq)$$

$$-538 + 3(-335)$$

$$= -1543$$

$$AJ(s) + 3/2 F_{2}(g)$$

By Hess's Law, LE = -4690 + 3(-506) + 538 - 3(-335) + -1510 $LE = -6175 \text{ kJ mo}^{-1}$ [1] (ecf with wrong cycle but correct application of Hess Law)

[1]

(iii) Electrophilic substitution

[2 marks for writing the correct mechanism]

[2 marks. 1/2 mark will be deducted for each mistake]

Reagents		
Adding KMnO ₄ , H ₂ SO ₄ (aq), heat	purple KMnO ₄ is decolourised	purple KMnO ₄ is not decolourised
Adding Br ₂ in CC/ ₄	Reddish brown Br ₂ is decolourised	Br ₂ remains reddish brown
Adding aq bromine	Yellow-orange/ orange/ yellow Br ₂ (aq) is decolourised	Br ₂ (aq) remains yellow- orange/ orange/ yellow

[1] reagent and conditions [1] observations

4 (a) (i) Mole fraction of CO = 0.3 / 2 = 0.15Mole fraction of H₂O = 0.3 / 2 = 0.15Mole fraction of CO₂ = 0.7 / 2 = 0.35Mole fraction of H₂ = 0.7 / 2 = 0.35 [1]

Average molecular mass

=
$$0.15 \times (12.0+16.0) + 0.15 \times 18.0 + 0.35 \times (12.0+16.0 \times 2) + 0.35 \times 2.0$$

= 23.0 [1]

(ii) pV = nRT

density =
$$(pMr) / RT$$

= $(6.50 \times 101325 \times 23.0) / (8.31 \times 323)$ [1]
= $5.64 \times 10^3 \text{ g m}^{-3}$ [1]

- (b) (i) At high pressure, the molecules are <u>closer together</u>, and the <u>intermolecular forces of attraction become significant</u>. [1] At some point, the kinetic energy of the particles is no longer large enough to overcome the intermolecular forces, and the gas liquefies. [1]
 - (ii) The ethanol molecules added can form hydrogen bonds with the phenol groups present and this increase the solubility of polyphenols. [1]

(ii)
$$3O_2(g) + CH_2 = CH_2(g) + H_2O(I)$$
 $\xrightarrow{\Delta H^b_r}$ $C_2H_5OH(I) + 3O_2(g)$ -834 $2CO_2(g) + 3H_2O(I)$ $\xrightarrow{-283 \times 2}$ $2CO(g) + 3H_2O(I) + O_2(g)$

[2 for correct energy cycle]: minus ½ for every mistake

$$\Delta H^{o}_{r} = -1411 + 2 \times 283 + 834 = -11.0 \text{ kJ mol}^{-1}$$
 [1 final answer, ecf based on cycle]

(d) (i) Electrophilic addition [1]

[1] x 3 for each step, including lone pairs, dipoles, curly arrows

The intermediate on the left is <u>more stable</u> [½] as it has <u>more electron-donating alkyl groups</u>. [½]

(iv) Bubble the gas separately into Br₂(aq) or Br₂ in CCl₄ [1] Yellow-orange Br₂(aq) / Reddish-brown Br₂ decolourised for propene, no decolourisation of Br₂(aq) for propane. [1]

OR

Add KMnO₄(aq), H_2SO_4 (aq), heat [1] Purple KMnO₄ decolourised for propene, no decolourisation of KMnO₄ for propane. [1]