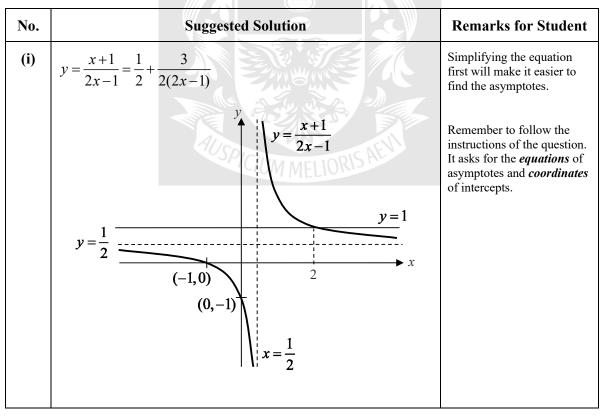


No.	Suggested Solution	Remarks for Student
(i)	When $\mu = 3$, we have	
	x - 2z = 4,	
	2x - 2y + z = 6,	
	5x - 4y + 3z = -9.	
	From GC, the point of intersection is $\left(-\frac{38}{3}, -\frac{119}{6}, -\frac{25}{3}\right)$.	
(ii)	When $\mu = 0$, we have $x - 2z = 4$,	It's 3 marks, so obviously they are looking for more than "no solution".
	x-2z = 4, 2x-2y+z = 6, 5x-4y = -9.	The normal can be read off the Cartesian form of the equation. Eg. $x - 2z = 4$ has
	From GC, p , q and r have no point of intersection. Since no two of the planes are parallel, they form a triangular prism.	normal $\begin{pmatrix} 1\\0\\-2 \end{pmatrix}$. Hence it is
		easy to check that no two of the planes are parallel.

No.	Suggested Solution	Remarks for Student
2	We have $y = \frac{x^2 + x + 1}{x - 1} \implies xy - y = x^2 + x + 1$ $\implies x^2 + (1 - y)x + (y + 1) = 0$ If y is a value the expression can take, the final quadratic equation has a real solution for x. Therefore $(1 - y)^2 - 4(1)(y + 1) \ge 0$ $\implies y^2 - 6y - 3 \ge 0$ $\implies y \le 3 - 2\sqrt{3} \text{ or } y \ge 3 + 2\sqrt{3}$ Set of values y can take is $(-\infty, 3 - 2\sqrt{3}] \cup [3 + 2\sqrt{3}, \infty)$.	While this is the fastest method, it can sometimes be hard to see how to use the discriminant in such questions. If you have difficulty, you may want to try the alternative method.

Alternative Method:	
We look for the range of the function	
$f(x) = \frac{x^2 + x + 1}{x - 1} = x + 2 + \frac{3}{x - 1}$	
by finding its maximum and minimum values.	
$f'(x) = 1 - \frac{3}{(x-1)^2} = 0$	
when $x = 1 - \sqrt{3}$ or $x = 1 + \sqrt{3}$. These give the stationary points $(1 - \sqrt{3}, 3 - 2\sqrt{3})$ and $(1 + \sqrt{3}, 3 + 2\sqrt{3})$.	
$f''(x) = \frac{6}{(x-1)^3},$	
so $f''(1-\sqrt{3}) = -\frac{1}{2\sqrt{3}} < 0$ and $f''(1+\sqrt{3}) = \frac{1}{2\sqrt{3}} > 0$. Thus	From here, it is best to use GC to check how the graph
$(1-\sqrt{3}, 3-2\sqrt{3})$ is a maximum point and $(1+\sqrt{3}, 3+2\sqrt{3})$ is a minimum point.	of $y = f(x)$ looks to figure out the range.
Therefore the set of values $y = f(x)$ can take is	
$(-\infty,3-2\sqrt{3}]\cup[3+2\sqrt{3},\infty).$	

Question 3



(ii)
$$\frac{x+1}{2x-1} = 1$$
 when $x = 2$. From the graph in (i), $\frac{x+1}{2x-1} < 1$ when algebraically. Use the graph.
 $x < \frac{1}{2}$ or $x > 2$.

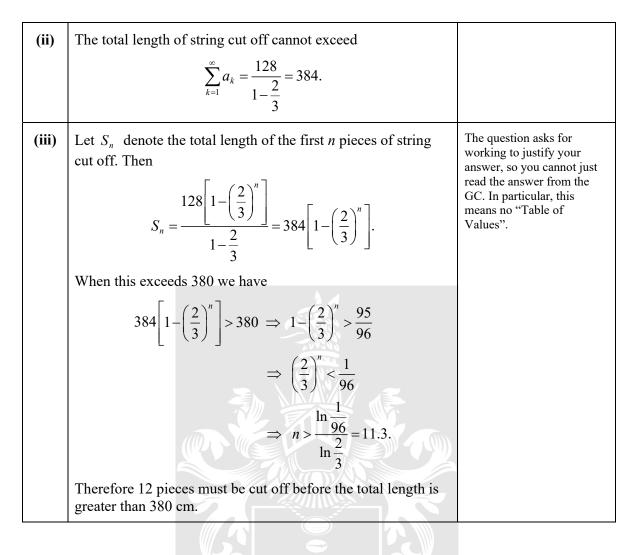
No.	Suggested Solution	Remarks for Student
(i)	$w^{3} = (1+2i)^{3} = 1+3(2i)+3(2i)^{2}+(2i)^{3} = -11-2i$	Binomial Theorem.
	Alternative Method:	TT 11 .1 1
	w = 1 + 2i	Usually this more tedious method is to be avoided.
	$w^2 = (1+2i)^2 = -3+4i$	But in this case w^2 is need later, so there is no loss in
	$w^3 = (1+2i)(-3+4i) = -11-2i$	time.
(ii)	Since $w = 1 + 2i$ is a root,	It is possible to do (ii) and
	$a(1+2i)^3 + 5(1+2i)^2 + 17(1+2i) + b = 0$	(iii) together. See below.
	$\Rightarrow a(-11-2i) + 5(-3+4i) + 17(1+2i) + b = 0$	
	$\Rightarrow (-11a+b+2)+(-2a+54)\mathbf{i}=0$	
	Comparing imaginary and real parts, we have $a = 27$ and	
	b = 11a - 2 = 295.	
(iii)	Since <i>a</i> and <i>b</i> are real and $w = 1 + 2i$ is a root, $w^* = 1 - 2i$ is also a root. Therefore	
	$27z^{3} + 5z^{2} + 17z + 295 = [z - (1 + 2i)][z - (1 - 2i)](cz + d)$	Remember the trick to
	$=(z^2-2z+5)(cz+d),$	evaluate $(z-w)(z-w^*)$.
	so clearly $c = 27$ and $d = \frac{295}{5} = 59$.	
	Hence the roots of this equation are $1+2i$, $1-2i$ and $-\frac{59}{27}$.	
	Alternative Method:	This method deals with both (ii) and (iii) together, so we
	Since <i>a</i> and <i>b</i> are real and $w = 1 + 2i$ is a root, $w^* = 1 - 2i$ is also a root. Therefore	do not use the values of a and b from (ii).
	$az^{3} + 5z^{2} + 17z + b = [z - (1 + 2i)][z - (1 - 2i)](cz + d)$	
	$=(z^2-2z+5)(cz+d)$	
	$= cz^{3} + (-2c+d)z^{2} + (5c-2d)z + 5d.$	

Comparing coefficients of
$$z^2$$
 and z gives
 $-2c+d=5$
 $5c-2d=17$.
Thus $c = 27$, $d = 59$, and $a = c = 27$, $b = 5d = 295$.
The roots of this equation are $1+2i$, $1-2i$ and $-\frac{59}{27}$.

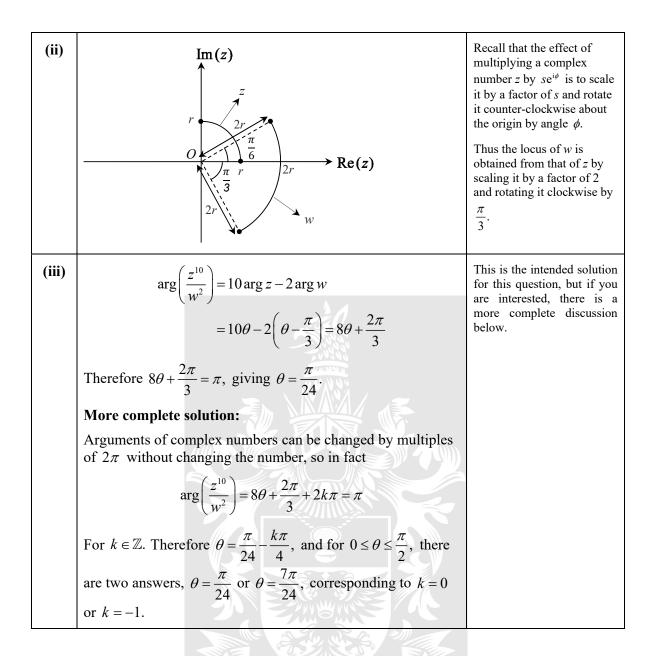
No.	Suggested Solution	Remarks for Student
(i)	Graph of $y = f(x)$ for $-4a \le x \le 6a$:	We can assume $a > 0$ here as we are given $-a \le x \le a$. Sketch the graph for $-a \le x \le 2a$ first, then use the condition f(x+3a) = f(x), which says that f is periodic with period 3a, to fill in the rest.
(ii)	Since $-a < \frac{1}{2}a < \frac{\sqrt{3}}{2}a < a$, $\int_{\frac{1}{2}a}^{\frac{\sqrt{3}}{2}a} f(x) dx = \int_{\frac{1}{2}a}^{\frac{\sqrt{3}}{2}a} \sqrt{\left(1 - \frac{x^2}{a^2}\right)} dx.$ Using the substitution $x = a \sin \theta$, we have $\sqrt{\left(1 - \frac{x^2}{a^2}\right)} = \sqrt{1 - \sin^2 \theta} = \cos \theta$ and $\frac{dx}{d\theta} = a \cos \theta.$ Also, $x = \frac{1}{2}a \Rightarrow \theta = \frac{\pi}{6}$ and $x = \frac{\sqrt{3}}{2}a \Rightarrow \theta = \frac{\pi}{3}.$ Therefore $\int_{\frac{1}{2}a}^{\frac{\sqrt{3}}{2}a} \sqrt{\left(1 - \frac{x^2}{a^2}\right)} dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos \theta (a \cos \theta) d\theta$ $= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} a \cos^2 \theta d\theta$ $= \frac{a}{2} \left[\theta + \frac{\sin 2\theta}{2}\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{\pi a}{12}.$	For substitutions, change <i>x</i> , d <i>x</i> and the limits.

No.	Suggested Solution	Remarks for Student
(i)	Since a and b are not parallel, a vector equation for the plane <i>OAB</i> is $\mathbf{r} = \lambda \mathbf{a} + \mu \mathbf{b}$, $\lambda, \mu \in \mathbb{R}$. As <i>C</i> lies on this plane, we have $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$ for some real constants λ and μ .	
(ii)	$\overrightarrow{ON} = \frac{1}{7} (4\mathbf{a} + 3\mathbf{c})$	Ratio Theorem
(iii)	The area of triangle <i>ONC</i> is $\frac{1}{2} \overrightarrow{ON} \times \overrightarrow{OC} = \frac{1}{2} \frac{1}{7} (4\mathbf{a} + 3\mathbf{c}) \times \mathbf{c} $ $= \frac{2}{7} \mathbf{a} \times \mathbf{c} $	Note the use of properties of the cross product, in particular $\mathbf{a} \times \mathbf{a} = 0$.
	$= \frac{2}{7} \mathbf{a} \times (\lambda \mathbf{a} + \mu \mathbf{b}) = \frac{2\mu}{7} \mathbf{a} \times \mathbf{b} .$ Similarly, the area of triangle <i>OMC</i> is $\frac{1}{2} \overrightarrow{OM} \times \overrightarrow{OC} = \frac{1}{2} \frac{1}{2} \mathbf{b} \times \mathbf{c} $ $= \frac{1}{4} \mathbf{b} \times (\lambda \mathbf{a} + \mu \mathbf{b}) = \frac{\lambda}{4} \mathbf{b} \times \mathbf{a} .$	Note that μ and λ below can be taken out of the magnitude because we are told both are positive.
	Since $ \mathbf{b} \times \mathbf{a} = \mathbf{a} \times \mathbf{b} $, we have $\frac{2\mu}{7} = \frac{\lambda}{4} \implies \lambda = \frac{8\mu}{7}.$	

No.	Suggested Solution	Remarks for Student
(i)	The length, a_k , of the <i>k</i> th piece of string cut off forms a geometric progression with first term 128 and common ratio $\frac{2}{3}$, so $p = a_n = 128 \left(\frac{2}{3}\right)^{n-1}$. Hence $\ln p = \ln \left[128 \left(\frac{2}{3}\right)^{n-1}\right]$ $= \ln 128 + (n-1)(\ln 2 - \ln 3)$ $= \ln 2^7 + (n-1)(\ln 2 - \ln 3)$	
	$= (n+6) \ln 2 + (-n+1) \ln 3$, giving $A = 1, B = 6, C = -1$ and $D = 1$.	



No.	Suggested Solution	Remarks for Student
(i)	We have $1 - i\sqrt{3} = 2e^{-\frac{\pi}{3}i}$, so $w = (1 - i\sqrt{3})z$	Be sure to consider the quadrant when finding arguments.
	$w = (1 - i\sqrt{3})z$ $= \left(2e^{-\frac{\pi}{3}i}\right)re^{i\theta} = 2re^{i\left(\theta - \frac{\pi}{3}\right)}.$	Both presentations are fine, but the first is more convenient if you need to add or subtract 2π to the
	Therefore $ w = 2r$ and $\arg w = \theta - \frac{\pi}{3}$.	argument.
	Alternative Method:	
	$ w = (1 - i\sqrt{3})z = 1 - i\sqrt{3} z = 2r$	
	$\arg w = \arg\left((1 - i\sqrt{3})z\right) = \arg(1 - i\sqrt{3}) + \arg z = \theta - \frac{\pi}{3}$	



No.	Suggested Solution	Remarks for Student
(i)	Let P_n be the statement $\sum_{r=1}^{n} r(2r^2 + 1) = \frac{1}{2}n(n+1)(n^2 + n + 1),$ for $n \in \mathbb{Z}^+$. When $n = 1$, LHS = $1(2(2)^2 + 1) = 3$ RHS = $\frac{1}{2}(1)(1+1)(1^2 + 1 + 1) = 3$,	This is a straightforward, if somewhat tedious, induction question. Just keep your cool in the manipulations and you should be fine.
	so P_1 is true.	

	Now assume that P_k is true for some $k \in \mathbb{Z}^+$, i.e.	
	$\sum_{r=1}^{k} r(2r^{2}+1) = \frac{1}{2}k(k+1)(k^{2}+k+1).$	
	We need to show that P_{k+1} is true, i.e.	
	$\sum_{r=1}^{k+1} r(2r^2 + 1) = \frac{1}{2}(k+1)[(k+1)+1][(k+1)^2 + (k+1)+1)]$	
	$=\frac{1}{2}(k+1)(k+2)(k^2+3k+3).$	
	We have	
	$\sum_{r=1}^{k+1} r(2r^2 + 1) = \sum_{r=1}^{k} r(2r^2 + 1) + (k+1)[2(k+1)^2 + 1]$	
	$=\frac{1}{2}k(k+1)(k^2+k+1)+(k+1)(2k^2+4k+3)$	
	$=\frac{1}{2}(k+1)[k(k^2+k+1)+2(2k^2+4k+3)]$	
	$=\frac{1}{2}(k+1)(k^3+5k^2+9k+6)$	At this step, you know that the cubic must have a factor of $(l + 2)$ as that is the
	$=\frac{1}{2}(k+1)(k+2)(k^2+3k+3).$	of $(k+2)$ as that is the answer you need! So just check it.
	Thus P_k is true $\Rightarrow P_{k+1}$ is true.	
	Since P_1 is also true, P_n is true for all $n \in \mathbb{Z}^+$ by Mathematical Induction.	
(ii)	We have	
	$f(r-1) = 2(r-1)^3 + 3(r-1)^2 + (r-1) + 24$	
	$= 2(r^3 - 3r^2 + 3r - 1) + 3(r^2 - 2r + 1) + r + 23$	
	$=2r^{3}-3r^{2}+r+24,$	Students should recognize
	so $f(r) - f(r-1) = 6r^2$. Therefore $a = 6$.	that this is clearly the set up for Method of Differences.
	We have $(r) = 1(r-1) = 0r$. Therefore $u = 0$.	
	$6\sum_{r=1}^{n} r^{2} = \sum_{r=1}^{n} \left[f(r) - f(r-1) \right]$	
	$=\{ f(1)-f(0) \}$	
	+ $f(2) - f(1)$	
	+ $f(3) - f(2)$	
	+ f(n-2) - f(n-3)	
	+ f(n-1) - f(n-2)	
	+ $f(n) - f(n-1)$ }	
	$= \mathbf{f}(n) - \mathbf{f}(0).$	

Therefore

$$\sum_{r=1}^{n} r^{2} = \frac{1}{6} [f(n) - f(0)]$$

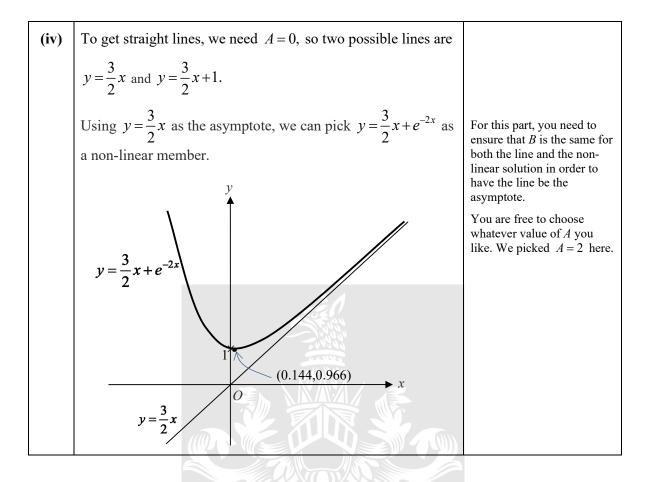
$$= \frac{1}{6} [(2n^{3} + 3n^{2} + n + 24) - 24]$$

$$= \frac{1}{6} n(n+1)(2n+1).$$
(iii)
We have $f(r) = r(2r^{2} + 1) + 3r^{2} + 24$, so

$$\sum_{r=1}^{n} f(r) = \sum_{r=1}^{n} r(2r^{2} + 1) + 3\sum_{r=1}^{n} r^{2} + \sum_{r=1}^{n} 24$$

$$= \frac{n(n+1)(n^{2} + n + 1)}{2} + \frac{n(n+1)(2n+1)}{2} + 24n.$$
Be careful with $\sum_{r=1}^{n} 24$.

No.	Suggested Solution	Remarks for Student
(i)	$\frac{\mathrm{d}z}{\mathrm{d}x} = 3 - 2z \Rightarrow \int \frac{1}{3 - 2z} \mathrm{d}z = \int 1 \mathrm{d}x$	Note that you are given $z < \frac{3}{2}$, so $3-2z > 0$ and
	$\Rightarrow -\frac{1}{2}\ln(3-2z) = x + C,$	there is no need for modulus in ln.
	where C is an arbitrary constant. Thus $z = \frac{3}{2} - Ae^{-2x}$, where	
	$A = \frac{e^{-2C}}{2}.$	
(ii)	Using (B), $\frac{dy}{dx} = z = \frac{3}{2} - Ae^{-2x} \implies y = \frac{3}{2}x + \frac{A}{2}e^{-2x} + B$,	
	where <i>B</i> is another arbitrary constant.	
(iii)	$y = \frac{3}{2}x + \frac{A}{2}e^{-2x} + B \implies \frac{dy}{dx} = \frac{3}{2} - Ae^{-2x}$	The question explicitly asked you to use the result for (ii), so this is the solution.
	$\Rightarrow \frac{d^2 y}{dx^2} = 2Ae^{-2x}$	
	$=2\left(\frac{3}{2}-\frac{\mathrm{d}y}{\mathrm{d}x}\right)$	Otherwise it is trivial: What you need to proof is
	$=-2\frac{\mathrm{d}y}{\mathrm{d}x}+3$	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = a\frac{\mathrm{d}y}{\mathrm{d}x} + b.$
	Therefore $a = -2$ and $b = 3$.	(B) allows us to write it as $\frac{d}{dx}(z) = az + b$, which is (A).



No.	Suggested Solution	Remarks for Student
(i)	We have $x = 3t^2$, $y = 2t^3$, so $\frac{dx}{dt} = 6t \text{ and } \frac{dy}{dt} = 6t^2$ $\Rightarrow \frac{dy}{dx} = \frac{6t^2}{6t} = t.$ Therefore the equation of the tangent at the point with parameter t is $y - 2t^3 = t(x - 3t^2) \Rightarrow y = tx - t^3.$	Remember the point with parameter <i>t</i> has coordinates $(3t^2, 2t^3)$ according to the parametric equations.
(ii)	The equations of the tangents at P and Q are $y = px - p^3$ and $y = qx - q^3$ respectively. When they intersect at R, $px - p^3 = qx - q^3 \implies (p - q)x = p^3 - q^3$ $\implies x = \frac{(p^3 - q^3)}{p - q} = p^2 + pq + q^2$ as $p \neq q$ (otherwise P and Q are the same point).	The rest of this question can be rather intimidating, and it is meant to be. If you have difficulty, take heart that you won't be the only one. Most papers will have one or two such questions, so simply try to do as many parts as you can.

	The corresponding <i>y</i> -coordinate is	
	$y = p(p^2 + pq + q^2) - p^3$	
	= pq(p+q).	
	When $pq = -1$, we have	
	$x = p^2 + q^2 - 1$ and $y = -(p+q)$,	To show that R lies on a
	so	particular curve, we need to check that its coordinates
	$y^{2} = (-1)^{2}(p+q)^{2} = p^{2} + q^{2} + 2pq = x + pq = x - 1.$	satisfy the equation of the curve.
	Therefore <i>R</i> lies on the curve with equation $x = y^2 + 1$.	
(iii)	For points on <i>C</i> , $x = 3t^2$ and $y = 2t^3$.	To find the point of intersection between a curve
	For points on <i>L</i> , $x = y^2 + 1$.	given in parametric form and one in Cartesian form,
	Therefore, for the point <i>M</i> ,	simply put the parametric
	$3t^2 = (2t^3)^2 + 1 \implies 4t^6 - 3t^2 + 1 = 0.$	equations into the Cartesian one.
	We solve for t^2 :	
	$4(t^2)^3 - 3t^2 + 1 = 0$	Recall the Factor and Remainder theorems which
	$\Rightarrow (t^{2}+1)(4(t^{2})^{2}-4t^{2}+1)=0$	help with factorization of polynomials.
	$\Rightarrow (t^2+1)(2t^2-1)^2 = 0$	Or simply cheat with GC!
	Since $t^2 + 1 > 0$, we have $t^2 = \frac{1}{2} \implies t = \pm \frac{1}{\sqrt{2}}$.	
	When $t = \pm \frac{1}{\sqrt{2}}$, $y = 2\left(\pm \frac{1}{\sqrt{2}}\right)^3 = \pm \frac{1}{\sqrt{2}}$.	
	At <i>M</i> , $y \ge 0$, so $t = \frac{1}{\sqrt{2}}$, $y = \frac{1}{\sqrt{2}}$ and $x = 3\left(\frac{1}{\sqrt{2}}\right)^2 = \frac{3}{2}$.	
	Therefore the coordinates of <i>M</i> are $\left(\frac{3}{2}, \frac{1}{\sqrt{2}}\right)$.	
(iv)	L intersects the x-axis at $(1,0)$, so required area is	
	$\int_{-\infty}^{\frac{3}{2}} y_C dx - \int_{-\infty}^{\frac{3}{2}} y_L dx = \int_{-\infty}^{\frac{1}{2}} 2t^3 (6t) dt - \int_{-\infty}^{\frac{3}{2}} \sqrt{x-1} dx$	Integrating parametric
	$= \int_{0}^{\frac{1}{\sqrt{2}}} 12t^4 \mathrm{dt} - \int_{1}^{\frac{3}{2}} (x-1)^{\frac{1}{2}} \mathrm{dx}$	equations is like doing substitution: change y, dx and the limits to t and the
	$=\frac{12}{5} \left[t^5 \right]_0^{\frac{1}{\sqrt{2}}} -\frac{2}{3} \left[(x-1)^{\frac{3}{2}} \right]_1^{\frac{3}{2}}$	corresponding values.
	$=\frac{12}{5}\frac{1}{4\sqrt{2}}-\frac{2}{3}\frac{1}{2\sqrt{2}}=\frac{2\sqrt{2}}{15}.$	