Suggested Solution to 2015 SH2 H2 Mathematics Preliminary Examination Paper 2

1 (a)	$x = 3 \tan \theta$
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sec^2\theta$
	When $x = 3$, $\tan \theta = 1 \implies \theta = \frac{\pi}{4}$
	When $x = \sqrt{3}$, $\tan \theta = \frac{\sqrt{3}}{3} \implies \theta = \frac{\pi}{6}$
	$\int_{\sqrt{3}}^{3} \frac{1}{x^2 \sqrt{x^2 + 9}} \mathrm{d}x$
	$= \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{9\tan^2\theta\sqrt{9\tan^2\theta+9}} \left(3\sec^2\theta\right) \mathrm{d}\theta$
	$=\frac{1}{9}\int_{\frac{\pi}{6}}^{\frac{\pi}{4}}\frac{1}{(\tan^2\theta)(3\sec\theta)}(3\sec^2\theta)d\theta$
	$=\frac{1}{9}\int_{\frac{\pi}{6}}^{\frac{\pi}{4}}\frac{\cos\theta}{\sin^2\theta}d\theta$
	$=\frac{1}{9}\left[\frac{-1}{\sin\theta}\right]_{\frac{\pi}{6}}^{\frac{\pi}{4}}$
	$=\frac{1}{9}\left(\frac{-1}{\sin\frac{\pi}{4}}+\frac{1}{\sin\frac{\pi}{6}}\right)$
	$=\frac{2-\sqrt{2}}{9}$
1 (b)	$\int \ln\left(x^2 + 4\right) dx$
	$=\int 1 \cdot \ln\left(x^2 + 4\right) dx$
	$= x \ln\left(x^2 + 4\right) - \int x \left(\frac{2x}{x^2 + 4}\right) dx$
	$= x \ln \left(x^{2} + 4 \right) - \int \left(\frac{2 \left(x^{2} + 4 \right) - 8}{x^{2} + 4} \right) dx$
	$= x \ln \left(x^{2} + 4 \right) - \int \left(2 - \frac{8}{x^{2} + 4} \right) dx$
	$= x \ln \left(x^{2} + 4 \right) - 2x + 4 \tan^{-1} \left(\frac{x}{2} \right) + c$
2 (a)	Amount saved after n months > 20000
	$1000 + 1000(1.05) + \dots + 1000(1.05)^{n-1} > 20000$

3 (i)	Converting the equations of p_1 and p_2 to Cartesian form,
	x + y - z = 0 - (1)
	2x - y - 2z - 0 - (2)
	Using the PolySmlt2 app in the GC,
	$l: \mathbf{r} = \begin{pmatrix} 2\\ -2\\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}, \ \lambda \in \mathbf{R}$
3 (ii)	Equating the RHS of the two equations for l and l_1 , we have: $\begin{pmatrix} 2+\lambda \\ -2 \\ \lambda \end{pmatrix} = \begin{pmatrix} 2+\mu \\ \mu \\ 8+5\mu \end{pmatrix}$
	$2 + \lambda = 2 + \mu (3)$
	$-2 = \mu (4)$
	$\lambda = 8 + 5\mu - \dots (5)$
	Substituting (4) into (3), we get $2 + \lambda = 2 - 2 = 0 \Longrightarrow \lambda = -2$.
	Substituting $\lambda = -2$ and $\mu = -2$ into (5),
	LHS = -2 = 8 + 5(-2) = RHS.
	Hence 1 and 1 intersect at exactly one point
	Hence, $p = p$ and l have exactly one common point of intersection
3	l lies on p . So l is perpendicular to the normal vector of p .
part	p_3 . So i is perpendicular to the normal vector of p_3 .
after	$\begin{vmatrix} 1 \\ 0 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ a \end{vmatrix} = 0$
(11)	$\begin{pmatrix} 0\\1 \end{pmatrix} \begin{pmatrix} a\\b \end{pmatrix} = 0$
	1 + b = 0
	b = -1 (shown)

3 (iii)	Method 1: Finding angle between two planes
	Acute angle between p_1 and p_2 = acute angle between p_2 and p_3
	$\cos^{-1} \frac{\begin{pmatrix} 1\\1\\-1 \end{pmatrix} \begin{pmatrix} 2\\-1\\-2 \end{pmatrix}}{\left(\sqrt{3}\right)\left(\sqrt{9}\right)} = \cos^{-1} \frac{\begin{pmatrix} 1\\a\\-1 \end{pmatrix} \begin{pmatrix} 2\\-1\\-2 \end{pmatrix}}{\left(\sqrt{2}+a^2\right)\left(\sqrt{9}\right)}$
	$\frac{3}{\sqrt{3}} = \frac{ 4-a }{\sqrt{2+a^2}}$
	$3\sqrt{2+a^2} = \sqrt{3} 4-a $
	$9(2+a^2) = 3(16-8a+a^2)$
	$6+3a^2 = 16-8a+a^2$
	$2a^2 + 8a - 10 = 0$
	$a^2 + 4a - 5 = 0$
	(a+5)(a-1)=0
	$a = -5 \text{ or } 1 \begin{pmatrix} \text{rejected because } p_3 \text{ and } p_1 \\ \text{are distinct and non-parallel} \end{pmatrix}$
	Since l lies on p_2 .
	$d = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -5 \\ -1 \end{pmatrix}$ $= 2 - 2(-5)$
	$\mathbf{r} \cdot \begin{pmatrix} 1 \\ -5 \\ -1 \end{pmatrix} = 12$

3 (iii) Method 2: Finding mirror image of point in plane

Alternatively, a point on p_1 is the origin, (0, 0, 0) and a point on p_2 is (3, 0, 0).

Denote the foot of perpendicular of O onto p_2 by P. Then

$$\overline{OP} = \begin{pmatrix} 3-0\\ 0-0\\ 0-0\\ 0-0 \end{pmatrix} \cdot \begin{pmatrix} 2\\ -1\\ -2 \end{pmatrix} \\ \frac{\sqrt{2^2 + (-1)^2 + (-2)^2}}{\sqrt{2^2 + (-1)^2 + (-2)^2}} \end{pmatrix} \begin{pmatrix} 2\\ -1\\ -2 \end{pmatrix} \\ \frac{\sqrt{2^2 + (-1)^2 + (-2)^2}}{\sqrt{2^2 + (-1)^2 + (-2)^2}} \end{pmatrix}$$
$$= \frac{6}{9} \begin{pmatrix} 2\\ -1\\ -2 \end{pmatrix} \\ = \begin{pmatrix} 4/3\\ -2/3\\ -4/3 \end{pmatrix}$$

Let O' be the mirror image of O in p_2 . Then

$$\overrightarrow{OO'} = 2\overrightarrow{OP}$$
$$= \begin{pmatrix} 8/3 \\ -4/3 \\ -8/3 \end{pmatrix}$$

Therefore a vector parallel to p_3

$$= \begin{pmatrix} 8/3 \\ -4/3 \\ -8/3 \end{pmatrix} - \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 2/3 \\ -8/3 \end{pmatrix} = \frac{2}{3} \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix}$$

Hence normal vector to $p_3 = \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -5 \\ -1 \end{pmatrix}$

Hence a = -5 and an equation for p_3 is

$$\mathbf{r} \cdot \begin{pmatrix} 1 \\ -5 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -5 \\ -1 \end{pmatrix} = 12$$

5 (a)	Assign a number from 1 to 2500 to each of the 2500 students OR obtain a list of the students from the administration office in order of their identification numbers or registration numbers. Use a random number generator to generate 500 numbers randomly and select the members who are assigned those numbers (based on the ordering of the list).
5 (b)	Assign a number from 1 to 2500 to each of the 2500 students OR obtain a list of the students from the administration office in order of their identification numbers or registration numbers.
	Next, determine the sampling interval size $k = \frac{2500}{500} = 5$.
	Randomly select any student from the list, say the 1^{st} student. Select every 5^{th} student thereafter (i.e. 6^{th} , 11^{th} , 16^{th}) until all 500 students are selected.
6 (i)	Let <i>X</i> be the number of students, out of 20 randomly chosen students, who wore their House T-shirts to school. Then $X \sim B(20, 0.14)$.
	P(X = 3) = 0.24086
	= 0.241 (3 s.f.)
6 (ii)	Let <i>Y</i> be the number of students, out of 60 randomly chosen students, who wore their school uniforms to school. Then $Y \sim B(60, 0.78)$.
	Since $n = 60 > 30$ is sufficiently large, np = 46.8 > 5 and
	n(1-p) = 13.2 > 5,
	therefore $Y \sim N(np, np(1-p))$ approximately
	i.e. $Y \sim N(46.8, 10.296)$ approximately.
	P(Y > 45) = P(Y > 45.5) (by continuity correction)
	= 0.6573140131
	= 0.657 (3 s.f.)

7 (i)	Number of ways $= \begin{pmatrix} 5 \\ 4 \end{pmatrix} = 5$
7 (ii)	Task 1 : Select the colour to appear once $\rightarrow \begin{pmatrix} 5\\1 \end{pmatrix}$ ways
	Task 2 : Select the colour to appear thrice $\rightarrow \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ ways
	Hence total number of ways $= \begin{pmatrix} 5 \\ 1 \end{pmatrix} \times \begin{pmatrix} 4 \\ 1 \end{pmatrix} = 20$
	or total number of ways $= \binom{5}{2} \times 2!$ or ${}^{5}P_{2} = 20$
7 (iii)	Case 1 : All balls are distinct Number of ways = 5 (from part (i))
	<u>Case 2 : Exactly 3 identical balls are selected</u> Number of ways = 20 (from part (ii)).
	Case 3: 2 pairs of identically-coloured balls (5)
	Number of ways $= \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 10$
	Case 4: 4 identically-coloured balls (5)
	Number of ways $= \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 5$
	Case 5: 1 pair of identically-coloured balls and 2 balls of different colours
	Number of ways $= \begin{pmatrix} 5\\3 \end{pmatrix} \times \begin{pmatrix} 3\\1 \end{pmatrix} = 30$ or
	Number of ways $= \begin{pmatrix} 5\\1 \end{pmatrix} \times \begin{pmatrix} 4\\2 \end{pmatrix} = 30$ or
	Number of ways $= \begin{pmatrix} 5\\2 \end{pmatrix} \times \begin{pmatrix} 3\\1 \end{pmatrix} = 30$ or
	Hence total number of ways -5 + 20 + 10 + 5 + 30
	= 70

8 (i)	Any two of the following three:
	1. The demand for each single-room occurs singly i.e. does not occur at the same instant.
	2. Each demand for a room in a day is independent of (or unaffected by) a demand
	occurring in any other part of the same day.
	3. The mean number of demands over any time interval of the <u>same duration</u> within the
	day is constant .
8 (ii)	Let X denote the random variable for the number of demands for a single-bed room in a
	day. Then $X \square$ Po(5.8).
	$P(X \ge 10)$
	$= 1 - P(X \le 9)$
	= 0.0708
8	Let Y denote the random variable for the number of demands for a double-bed room in a
(iii)	day. Then $Y \square$ Po(37.1).
	$X + Y \square$ Po(5.8+37.1)
	$\Rightarrow X + Y \square \operatorname{Po}(42.9)$
	P($X \ge 1$ and $Y \ge 36 X + Y = 38$)
	$P(X \ge 1 \text{ and } Y \ge 36 X + Y = 38)$
	P(X > 1 and Y > 36 and X + Y - 38)
	$=\frac{P(X+Y=38)}{P(X+Y=38)}$
	P(Y - 1 & Y - 37) + P(Y - 2 & Y - 36)
	$=\frac{\Gamma(X-I)(X-I)(X-2)(X-I)(X-2)(X-I)}{\Gamma(X-I)(X-I)(X-I)}$
	P(X+I=38)
	$= \frac{P(X=1)P(Y=37) + P(X=2)P(Y=36)}{P(X=2)P(Y=36)}$
	P(X + Y = 38)
	= 0.092653
	= 0.0927 (to 3 s.f.)

Let X and Y be the weight in, grams, of a randomly chosen handphone and a randomly 9 **(a)** chosen tablet respectively. $X \sim N(130, 5^2)$ and $Y \sim N(330, 6^2)$ Note that $E(X_1 + ... + X_5 - 2Y) = 5E(X) - 2E(Y) = -10$ $\operatorname{Var}(X_1 + ... + X_5 - 2Y) = 5 \operatorname{Var}(X) + 4 \operatorname{Var}(Y) = 269$ Hence, $X_1 + X_2 + X_3 + X_4 + X_5 - 2Y \sim N(-10, 269)$ $P(X_1 + X_2 + X_3 + X_4 + X_5 - 2Y < 0) = 0.729 \quad \text{(to 3.s.f)}$ Let $\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$ denote the sample mean mass of the *n* handphones. Then, 9 **(b)** $\overline{X} \sim N\left(\mu, \frac{5^2}{n}\right).$ $\mathbf{P}\left(\left|\overline{X}-\mu\right|>1\right)\leq0.04\ .$ Standardising, $Z = \frac{X - \mu}{5} \sim N(0, 1)$. Thus the probability becomes \sqrt{n} $P\left|\left|Z\right| > \frac{1}{5/r}\right| \le 0.04$ 0 \sqrt{n} By symmetry, $\mathbf{P}\left(Z < -\frac{\sqrt{n}}{5}\right) \le 0.02$ $-\frac{\sqrt{n}}{5} < -2.053748911$ *n*≥105.4471146. Thus, least value of *n* is 106.

10	Let <i>E</i> be the event that a randomly selected bottle of cultured milk is grape flavoured
(a)	$P(E) = 0.6 \times 0.3 + 0.4 \times 0.1$
(i)	= 0.22
	0.22
10	Let <i>F</i> be the event that a bottle of cultured milk is manufactured by Yacoat
(a)	
(ii)	$\mathbf{P}(E + E) = \mathbf{P}(F \cap E)$
	$P(F E) = \frac{P(E)}{P(E)}$
	0.6×0.3
	$=\frac{0.0\times0.5}{0.22}$
	0.22
	$=\frac{9}{11}$ or 0.818
10	$0.4q - 0.4p = 0.1 \implies q - p = 0.25 (1)$
(b)	Also, we have $p+q+0.1=1 \implies p+q=0.9$ (2)
	Solving (1) and (2), $p = 0.325$ and $q = 0.575$
10	$P(A) = 0.4 \times 0.6 \times 2! = 0.48$
(c)	
	P(B)
	$=(0.6 \times 0.5 + 0.4 \times 0.4)^2$ or
	$(0.6 \times 0.5)^2$ + $(0.4 \times 0.4)^2$ + $(0.6 \times 0.5)(0.4 \times 0.4) \times 2!$
	$\underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	Both are Yacoat & Apple Both are Vitergent & Apple One Yacoat & Apple, the
	other Vitergent & Apple
	= 0.2116
	$P(A \cap B) = (0.6 \times 0.5) \times (0.4 \times 0.4) \times 2! = 0.096$
	1st bottle 2nd bottle Permutation
	(Yacoat & Apple) (Vitergent & Apple)
	Therefore.
	$P(A \cup B)$
	$= P(A) + P(B) - P(A \cap B)$
	= 0.48 + 0.2116 - 0.096
	1489
	$=\frac{1}{2500}$ or 0.5956

11(i)	$\overline{x} = 30 + \frac{360}{40} = 39$
	$s^{2} = \frac{1}{39} \left[4050 - \frac{360^{2}}{40} \right] = 20.76923 = 20.8$
11(ii)	$H_0: \mu = 40$ $H_1: \mu < 40$
1^{st}	$\frac{1}{X} - 40 - (2076923)$
part	Under H ₀ , $Z = \frac{X + 10}{\sqrt{\frac{20.76923}{40}}} \square N(0,1) \text{ or } X \square N\left(40, \frac{20.70923}{40}\right)$
	Reject H_0 if <i>p</i> -value < 0.04.
	From GC, <i>p</i> -value = $0.0826 > 0.04$
	or observed test statistic value, $z_{calc} = -1.3878 > -1.7506$,
	so we do not reject H_0 .
	There insufficient evidence at the 4% significance level, to conclude
	that the manufacturer has overstated the mean weight of his products.
11 _. (ii)	There is a probability of 0.04 that we wrongly conclude that the
2 nd	manufacturer has overstated the mean weight of his products.
part	OR
	There is a probability of 0.04 that we conclude that the mean weight of the manufacturer's
	OP
	There is a probability of 0.04 that we reject the claim that the mean weight of the
	manufacturer's products is 40 grams when this claim is actually correct.
11(iii)	$\mathbf{H}_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0 \mathbf{H}_1: \boldsymbol{\mu} < \boldsymbol{\mu}_0$
	$\overline{X} - \mu_0$ (10)
	Under H ₀ , $T = \frac{10}{\sqrt{\left(\frac{20}{19}\right)(0.25)/20}} \sim t(19)$
	Do not reject H_0 if observed value of test statistic > critical value:
	$\frac{41-\mu_0}{2} > -1.72913$
	$\sqrt{\left(\frac{20}{19}\right)(0.25)/20}$ >-1.72313
	$\frac{41 - \mu_0}{\sqrt{0.25/19}} > -1.72913$
	$41 - \mu_0 > -1.72913\sqrt{0.25/19}$
	$\mu_0 < 41 + 1.72913\sqrt{0.25/19}$
	$\mu_0 < 41.19834$
	$\mu_0 < 41.1 \text{ or } 41.2 (3 \text{ s.f.}) \text{ or } \mu_0 \le 41.1$

12(i),	▲h
(ii)	$P_{\mathbf{X}}$
	•(5,130)
	×
	×
	×
	(1,60) × × ~
	OS
12(iii)	<i>r</i> -value = 0.9812;
	We use the h on s line since h is dependent on s OR
	We use the h on s line since s is the independent variable.
	h on s line: h = 35.851 + 17.486s
	When $h = 100$, $s = 3.669$ = $3.67 (3 \circ f)$
12(iv)	For model (I) r -value = 0.9898
12(11)	For model (II), r -value = 0.9380
	Hence model (II) is more suitable since the correlation coefficient is nearer to 1, which
	suggests a stronger linear relationship between h and s^2 as compared to that between h and
10()	e ^s .
12(v)	Since the data point (s, h) lies on the regression line, the answer in part
	(iii) will not change as the equation of the regression line is not affected.
	UK
	The addition of the data point (\bar{s}, \bar{h}) does not add further to the sum of squares of the <i>h</i> -
	errors between the current regression line and the data points, hence the <i>h</i> -errors remain
	minimised with the same line.