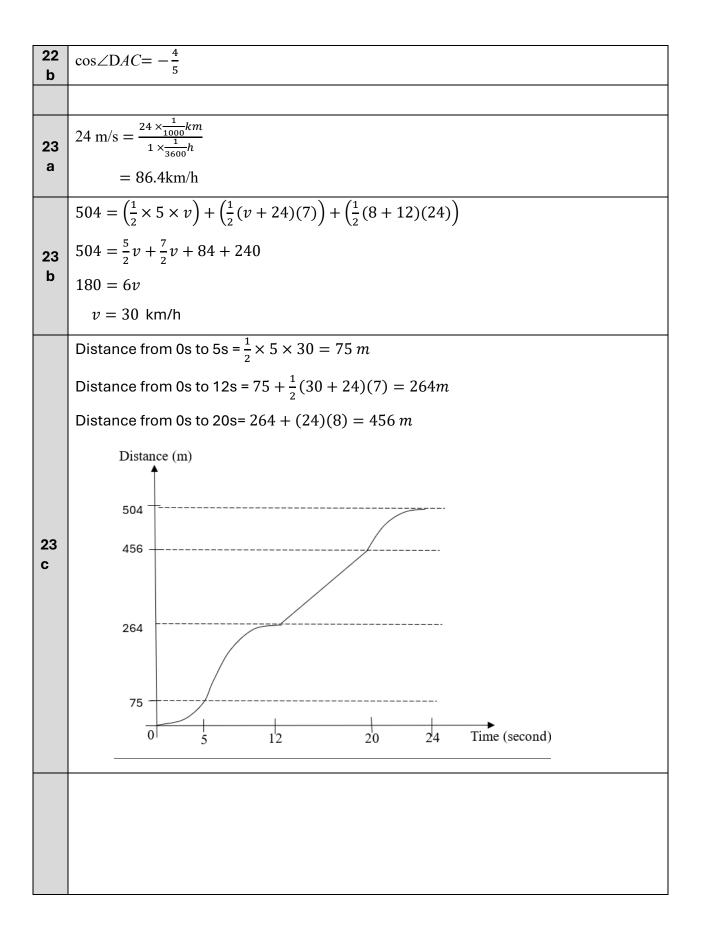
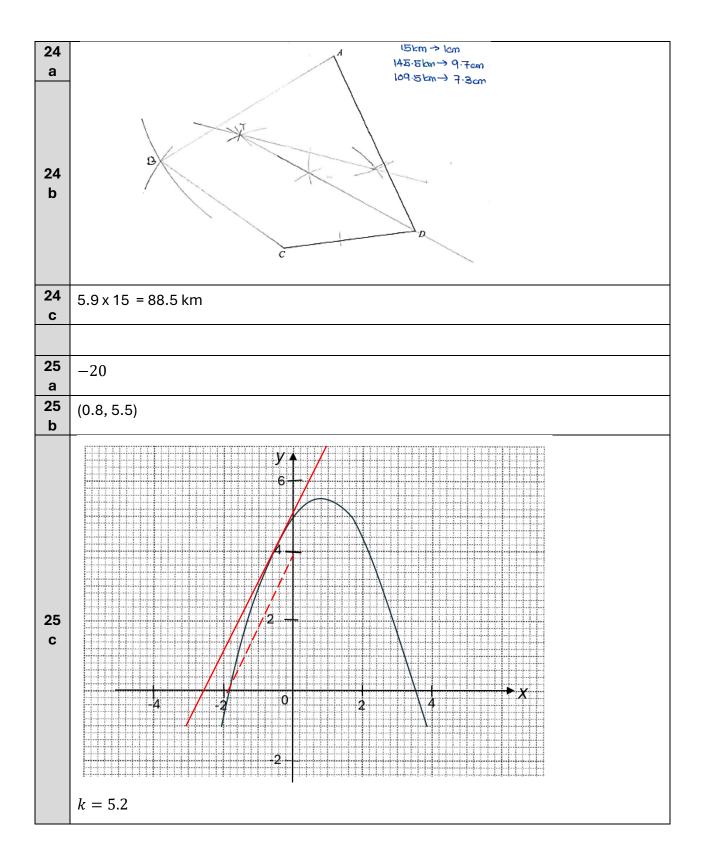

Nan Chiau High School

2024 Secondary 4 Mathematics

Mathematics Prelim Examination Paper 1 Solutions

Qn	Solution
1a	False
1b	False
2	$\frac{105b}{a} = \frac{(3\times5\times7)(2^2\times5\times7)}{2\times3^2\times5}$ $= \frac{2^2\times3\times5^2\times7^2}{2\times3^2\times5}$ $= \frac{2\times5\times7^2}{3}$ Numerator 2 × 5 × 7 ² does not include the factor 3 to reduce $\frac{105b}{3}$ to a whole number.
3	Length of shorter portion of rope = $\frac{4}{11} \times 44$ = 16 cm Length of longer portion of rope = 28 cm Let x be the length rope cut. $\frac{16-x}{28-x} = \frac{2}{5}$ 5(16-x) = 2(28-x) 80 - 5x = 56 - 2x 24 = 3x x = 8
4	$7^{9-x^{2}} - 1 = 0$ $7^{9-x^{2}} = 1$ $7^{(3-x)(3+x)} = 7^{0}$ x = 3 or x = -3
5	$y^{3} = \frac{k}{x^{2}}$ $\frac{k}{3^{2}} - \frac{k}{6^{2}} = 5$ $\frac{k}{9} - \frac{k}{36} = 5$ $\frac{k}{12} = 5$ $k = 60$ $y^{3} = \frac{60}{x^{2}}$ $2^{3} = \frac{60}{x^{2}}$ $x^{2} = 7.5$ $x = \pm 2.74$




	Let the first digit be r and second	digit be y	
	Let the first digit be <i>x</i> and second digit be <i>y</i>		
	A number between 20 to 100	Let the number be $10x + y$	
	Add the two digits together	<i>x</i> + <i>y</i>	
10	Subtract the sum of the two digits	(10x + y) - (x + y)	
	from your original number to get a new number	=9x	
	<i>The new number is a multiple of 3</i>	Since the new number is a multiple of 9 and 3 is a	
	1 5	factor of 9, hence the new number is a multiple of 3.	
		· · · · · · · · · · · · · · · · · · ·	
	$2(mn)^2 - 2mn = 3mn + 3$		
	$2m^2n^2 - 5mn - 3 = 0$		
11	(mn-3)(2mn+1) = 0		
	$mn = 3$ or $mn = -\frac{1}{2}$		
	(mn-3)(2mn+1) = 0 $mn = 3$ or $mn = -\frac{1}{2}$ $n = \frac{3}{m}$ or $n = -\frac{1}{2m}$		
	<u> </u>		
	$\frac{4}{4} + \frac{2}{2} \div \sqrt[4]{81m^{16}} = \frac{4}{4} + \frac{2}{2} \div 32$	m^4	
	$\frac{\frac{4}{3} + \frac{2}{9m} \div \sqrt[4]{81m^{16}} = \frac{4}{3} + \frac{2}{9m} \div 3m}{= \frac{4}{3} + \frac{2}{9m} \times \frac{2}{3m}}$	1	
12	$=\frac{1}{3}+\frac{1}{9m}\times\frac{1}{3m}$	n^4	
12	$=\frac{4}{2}+\frac{2}{27m^5}$		
	$= \frac{4}{3} + \frac{2}{9m} \times \frac{3}{3r}$ $= \frac{4}{3} + \frac{2}{27m^5}$ $= \frac{36m^5 + 2}{27m^5}$		
	27m ⁵		
	$-9x^2+12x-4$ $-(3x-2)^2$		
	$\frac{1}{3 - \frac{1}{x}} = \frac{1}{3 - \frac{1}{2x - x}}$		
	$x - \frac{1}{2}$ $-(3x - 2)^2$		
13	$=\frac{(3x-2)}{3-\frac{2}{3}}$		
	$-(3x-2)^2$		
	$\frac{\frac{-9x^2+12x-4}{3-\frac{1}{x-\frac{x}{2}}} = \frac{-(3x-2)^2}{3-\frac{1}{\frac{2x-x}{2}}} = \frac{-(3x-2)^2}{3-\frac{2}{x}} = \frac{-(3x-2)^2}{\frac{3x-2}{x}}$		
	=-x(3x-2)		
	$y = \frac{1}{5}x^2 - 2x + 7$ [1]]	
	y = x [2]		
	Sub eqn[1] into eqn[2]		
	$x = \frac{1}{5}x^2 - 2x + 7$		
	5		
14	$\frac{1}{5}x^2 - 3x + 7 = 0$		
	$x = \frac{3 \pm \sqrt{(-3)^2 - 4(\frac{1}{5})(7)}}{2(\frac{1}{2})}$		
	$x = \frac{1}{2(\frac{1}{5})}$		
	x = 2.89 or $x = 12.1$		

	y = 2.89 or $y = 12.1$
	(2.89, 2.89) and (12.1, 12.1)
	(2.07, 2.07) and (12.1, 12.1)
15 a	Let the y-intercept (vertical distance) be d By Pythagoras' Thm $d = \sqrt{17^2 - 8^2}$ d = 15 $\therefore C(0, -15)$
15 b	Let the x-coordinate of point B be b $b = \frac{1}{8}(-15)$ $b = -\frac{15}{8}$ Equation of line of symmetry, $x = \frac{-\frac{15}{8} + (-8)}{2}$ $x = -\frac{79}{16}$ Since $y = -15$ when $x = 0$ Coefficient of $x^2 = -1$ Since curve is $y = -(x + 8)(x + \frac{15}{8})$ or $y = -\frac{1}{8}(x + 8)(8x + 15)$ $\therefore y = -(-\frac{79}{16} + 8)(-\frac{79}{16} + \frac{15}{8})$ $y = \frac{2401}{256}$ the coordinate of the maximum point is $(-\frac{79}{16}, \frac{2401}{256})$ or $(-4.94, 9.38)$
16 a	$ \binom{\frac{8}{8+5+x}}{\frac{7}{7+5+x}} = \frac{4}{33} \binom{\frac{8}{13+x}}{\frac{7}{12+x}} = \frac{4}{33} 33(8)(7) = 4(13+x)(12+x) 462 = x^2 + 25x + 156 x^2 + 25x - 306 = 0 (x - 9)(x + 34) = 0 x = 9 \text{ or } x = -34 \text{ (rej)} $
16 b	P(second marble is green when three marbles are drawn) = $\left(\frac{17}{22}\right)\left(\frac{5}{21}\right)\left(\frac{16}{20}\right)$ = $\frac{34}{231}$

17 a	ε X 4 2 5 7 3 11 13 1 6 8 9 10 12 14 15 16 Y 1 6 X Y 1 6 X Y X X X X X X X X X X X X X		
17 bi			
17 bii	Number of subsets = 2^{n-1}		
18 a	Mean = $\frac{12(150)+10(200)+8(300)+x(400)+5(500)+2400}{12+10+8+x+5+1}$ $325 = \frac{11100+400x}{36+x}$ 11700 + 325x = 11100 + +400x 600 = 75x x = 8 ∴ Total number of workers = 12 + 10 + 8 + 8 + 5 + 1 = 44		
18 b	<u>Median</u> is a better gauge of workers' salary as there is salary that is <u>an extreme value</u> <u>of S2400</u> compared to the rest.		
19 a	40% + 35% + 20% = 95% As pie charts are used to visualize parts of a whole, all the parts should always add up to 100%. [or] The title exaggerated the responses of the support for Candidate C.		
19 b	To include in uncounted / spoiled votes (5%) to show the full result of votes [or] To re-calculate the votes according to the three candidates according to base of 95%. [or] To recraft the title to be less bias and allow readers to analysis themselves.		

	Area of rhombus = $2 \times \frac{1}{2}(7.4)(7.4) \sin 60$		
	=47.424 cm ² [Or]		
	height of rhombus = $(7.4)(\sin 60) = 6.4086$ cm Area of rhombus = $(6.4086)(7.4) = 47.424$ cm ²		
	Area of mombus = $(0.4000)(7.4) = 47.424$ cm		
20 a	$AD^2 = 7.4^2 + 7.4^2 - 2(7.4)(7.4)\cos 120$		
ä	AD = 12.817 cm		
	Area of sector = $\frac{60}{360} \times \pi (12.817)^2$		
	$= 86.014 \text{ cm}^2$ Shaded area $= 86.014 - 47.424$		
	$= 38.6 \text{ cm}^2$		
	Arc length $=\frac{60}{360} \times 2\pi (12.817)$		
20	= 13.422		
b	Perimeter = $13.422 + 2(12.817 - 7.4) + 2(7.4)$ = 39.1 cm		
	- 59.1 011		
21	$10^2 + 4^2 = (10 - 4)^2 + 2(10)(4)$		
а	$(2n)^2 + (n-1)^2 - (2n-n+1)^2 + 2(2n)(n-1)$		
21			
b	$or = 4n^2 + n^2 - 2n + 1$ or $= 5n^2 - 2n + 1$		
	$p^2 + q^2 = 1249$		
	$5n^2 - 2n + 1 = 1249$		
21	$5n^2 - 2n - 1248 = 0$		
21 C	(n-16)(5n+78) = 0		
	$n = 16$ or $n = -\frac{78}{5}$ (rej)		
	Hence, $p = 32$ and $q = 15$		
	$AB^2 + BC^2 = 6.4^2 + 4.8^2 = 64$		
	$AC^2 = 8^2 = 64$		
	Since $AB^2 + BC^2 = AC^2$,		
22 a	hence by converse of Pythagoras' Theorem , $\angle ABC = 90^o$		
a	$\sin \angle ACB = \frac{6.4}{8}$		
	$=\frac{4}{5}$		
	5		

