Question 1 (Connected Rates of Change)

(i)	$k = r\theta + 2r = r(\theta + 2) \Longrightarrow \theta + 2 = \frac{k}{r} \Longrightarrow \theta = \frac{k}{r} - 2$ $A = \frac{1}{2}r^{2}\theta = \frac{1}{2}r^{2}\left(\frac{k}{r} - 2\right) = \frac{kr}{2} - r^{2}$ $\frac{dA}{dr} = \frac{k}{2} - 2r$	Interestingly, many students could derive the formula $A = \frac{1}{2}r^2\theta$ by considering $A = \frac{\theta}{2\pi} \times \pi r^2$ but not many could do so similarly for the arc length formula $s = r\theta$. As a result, there are many students who could not prove the required result.
(ii)	$\frac{dA}{dt} = \left(\frac{k}{2} - 2r\right) \frac{dr}{dt}$ $= \left(\frac{k}{2} - 2 \times \frac{k}{3}\right) \frac{k}{10}$ $= -\frac{k^2}{60}$	This part of the question is better performed than the previous part as almost the whole cohort is able to relate the rates of change. However, many could not apply the information that "arc length is equal to the radius" in a useful manner.

Question 2 (Systems of Linear Equations)

$$\begin{aligned} (-2)^{3} + a(-2)^{2} + b(-2) + c &= 0 \\ \Rightarrow -8 + 4a - 2b + c &= 0 \\ \Rightarrow 4a - 2b + c &= 8 & \dots (1) \\ \\ \left(3e^{i\left(-\frac{2}{3}\pi\right)}\right)^{3} + a\left(3e^{i\left(-\frac{2}{3}\pi\right)}\right)^{2} + b\left(3e^{i\left(-\frac{2}{3}\pi\right)}\right) + c &= 0 \\ 27e^{i(-2\pi)} + 9ae^{i\left(-\frac{4}{3}\pi\right)} + 3be^{i\left(-\frac{2}{3}\pi\right)} + c &= 0 \\ 27 + 9a\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + 3b\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) + c &= 0 \\ (27 - \frac{9}{2}a - \frac{3}{2}b + c\right) + \left(\frac{9\sqrt{3}}{2}a - \frac{3\sqrt{3}}{2}b\right)i &= 0 \\ \end{aligned}$$
Comparing real parts, $27 - \frac{9}{2}a - \frac{3}{2}b + c &= 0 -\dots (2) \\ \end{aligned}$
Comparing imaginary parts, $\frac{9\sqrt{3}}{2}a - \frac{3\sqrt{3}}{2}b &= 0 \Rightarrow 3a - b &= 0 -\dots (3) \\ \end{aligned}$
Solving (1), (2) and (3) with the GC, we get $a = 5, b = 15, c = 18. \\ \frac{Alternative Method}{3e^{i\left(-\frac{2}{3}\pi\right)}} = 3\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = -\frac{3}{2} - \frac{3\sqrt{3}}{2}i \\ \end{aligned}$
Since all coefficients of the polynomial are real, then $-\frac{3}{2} + \frac{3\sqrt{3}}{2}i$ is also a root of the equation by the Conjugate Root Theorem. Therefore, $z^{3} + az^{2} + bz + c \\ = (z + 2)\left(z + \frac{3}{2} + \frac{3\sqrt{3}}{2}i\right)\left(z + \frac{3}{2} - \frac{3\sqrt{3}}{2}i\right) \\ = (z + 2)\left(\left(z + \frac{3}{2}\right)^{2} + \frac{9(3)}{4}\right) \\ = (z + 2)\left(z^{2} + 3z + 9\right) \\ = z^{3} + 5z^{2} + 15z + 18 \\ \end{aligned}$
Therefore $a = 5, b = 15, c = 18 \end{cases}$

Both methods were fairly common. Many careless mistakes were made in calculations. Common mistakes: ×Not stating "Since the coefficients of the polynomial are all real" when using the Conjugate Root Theorem. ×Incorrect conversion of complex numbers from exponential form to cartesian form. (Please identify the <u>quadrant</u> the complex number is in.) ×Not converting the complex numbers to cartesian form (in the first method). **x** Writing " $z = 3e^{i\left(-\frac{2}{3}\pi\right)}$ is a root ...". (Should be " $3e^{i\left(-\frac{2}{3}\pi\right)}$ is a root ..." or " $z = 3e^{i\left(-\frac{2}{3}\pi\right)}$ is a solution ...").

Question 3 (Inequalities)

(i)	Method 1	Many candidates correctly simplified
	$\frac{x-6}{4x^2+x-5} \ge 1$	the inequality to $\frac{-4x^2-1}{4x^2-1} \ge 0$.
	4x + x - 5	$4x^{2} + x - 5$
	$\Rightarrow \frac{x-6}{4x^2+x-5} - 1 \ge 0$	The correct factorisation of $4x^2 + x - 5$
	$x-6-(4x^2+x-5)$	into $(4x+5)(x-1)$ is often seen as
	$\Rightarrow \frac{1}{4x^2 + x - 5} \ge 0$	well.
	$\Rightarrow \frac{-4x^2-1}{2} \ge 0$	Some candidates made mistakes in the
	$4x^2 + x - 5$	algebraic manipulations e.g. writing the
	$\Rightarrow \frac{4x^2 + 1}{4x^2 + x - 5} \le 0$	numerator as $4x^2 - 1$.
	$4x^2 + 1$	There are some candidates who tried to
	$\Rightarrow \overline{(4x+5)(x-1)} \leq 0$	factorise $4x^2 + 1$. Please note that
	$\Rightarrow (4x+5)(x-1) \le 0$	complex roots are not considered for the determination of the critical values.
	since $4x^2 + 1 \ge 1 > 0$ for all $x \in \mathbb{R}$	
	Method 2	Common mistakes:
	$\frac{x-6}{4x^2+x-5} \ge 1$	× Inclusion of $x = -\frac{5}{4}$ and $x = 1$ in the
	$\Rightarrow (x-6)(4x^{2}+x-5) \ge (4x^{2}+x-5)^{2}$	solution of the inequality. These values make the denominator in the
	$\Rightarrow (4x^2 + x - 5) \left[(x - 6) - (4x^2 + x - 5) \right] \ge 0$	original inequality 0, so they need to be excluded.
	$\Rightarrow \left(4x^2 + x - 5\right)\left(-4x^2 - 1\right) \ge 0$	Incorrect evaluation of signs in the number line, leading to incorrect range
	$\Rightarrow (4x+5)(x-1)(-4x^2-1) \ge 0$	of solutions $x < -\frac{5}{-}$ or $1 < x$
	$\Rightarrow (4x+5)(x-1) \le 0$	4
	since $-4x^2 - 1 \le 1 < 0$ for all $x \in \mathbb{R}$	
	\backslash	
	5	
	$-\frac{1}{4}$ 1	
The	refore, $-\frac{5}{4} < x < 1$ since $x \neq -\frac{5}{4}$ and $x \neq 1$	

(ii)
$$\frac{x-6x^2}{4+x-5x^2} \ge 1$$

Replace x with $\frac{1}{y}$ and we get
 $\frac{1}{y}-6\left(\frac{1}{y}\right)^2}{4+\frac{1}{y}-5\left(\frac{1}{y}\right)^2} \ge 1 \Rightarrow \frac{\left(\frac{y-6}{y^2}\right)}{\left(\frac{4y^2+y-5}{y^2}\right)} \ge 1 \Rightarrow \frac{y-6}{4y^2+y-5} \ge 1$
Therefore, $-\frac{5}{4} < y < 1$, i.e. $-\frac{5}{4} < \frac{1}{x} < 1$.
So
 $-\frac{5}{4} < \frac{1}{x} < 0$ or $0 < \frac{1}{x} < 1$
 $x < -\frac{4}{5}$ or $x > 1$
Many students are able to identify that a suitable replacement is $\frac{1}{y}$.
Common mistakes:
 x Solving $-\frac{5}{4} < \frac{1}{x} < 1$ is not simply just taking the reciprocals of the terms and keeping the sign i.e., the inequality above is **not equivalent** to $-\frac{4}{5} < x < \frac{1}{1}$. A reliable way to solve reciprocals is to look at the graph $y = \frac{1}{x}$.
 x Some students wrote ' $x = \frac{1}{x}$ ' to mean 'replace x with $\frac{1}{x}$. If the former holds, then $x = \pm 1$, which is not part of the solution set.

Question 4 (Vectors I)

(ii) If
$$OACB$$
 is a parallelogram,
 $\mathbf{c} = \mathbf{a} + \mathbf{b}$

$$\left(\frac{2}{3}\lambda - \frac{2}{3}\mu\right)\mathbf{a} + \left(1 - \lambda - \frac{1}{3}\mu\right)\mathbf{b} + \left(\frac{1}{3}\lambda + \mu - 1\right)\mathbf{c} = \mathbf{0}$$
This part was usually either not attempted or very badly done. Most students could not recognise that $\mathbf{c} = \mathbf{a} + \mathbf{b}$.
Common mistakes:
* Many did not read the question and stopped at the step $\left(\frac{2}{3}\lambda - \frac{2}{3}\mu + \frac{1}{3}\lambda + \mu - 1\right)\mathbf{a} + \left(1 - \lambda - \frac{1}{3}\mu + \frac{1}{3}\lambda + \mu - 1\right)\mathbf{b} = \mathbf{0}$
 $\left(\lambda + \frac{1}{3}\mu - 1\right)\mathbf{a} + \left(\frac{2}{3}\mu - \frac{2}{3}\lambda\right)\mathbf{b} = \mathbf{0}$
Since \mathbf{a} and \mathbf{b} are not parallel to each other and non-zero vectors,
 $\lambda + \frac{1}{3}\mu - 1 = \mathbf{0}$...(1)
 $\frac{2}{3}\mu - \frac{2}{3}\lambda = \mathbf{0}$...(2)
Solving, $\lambda = \mu = \frac{3}{4}$
Thus position vector of F is given by
 $= \mathbf{b} + \frac{3}{4}\left(\frac{1}{3}(\mathbf{a} + \mathbf{b}) + \frac{2}{3}\mathbf{a} - \mathbf{b}\right)$
 $= \frac{3}{4}\mathbf{a} + \frac{1}{2}\mathbf{b}$

Question 5 (Maxima & Minima Problems)

Let V_h and v_h be the volumes of the original cone and	This part was very well done.
cone that was removed. Since both cones are similar, $(3, 3)$	leave their answers in simplied
$\frac{v_h}{v_h} = \left(\frac{ar}{a}\right)^2 = a^3$.	form.
V_h (r)	
Also, it is given that $h = \sqrt{4^2 - r^2}$. Hence	
$V = \pi \left(ar\right)^2 r + \left(V_h - v_h\right)$	
$=\pi a^2 r^3 + \left(V_h - a^3 V_h\right)$	
$= \pi a^2 r^3 + (1 - a^3) \left(\frac{1}{3} \pi r^2 h\right)$	
$=\pi a^2 r^3 + \frac{\left(1-a^3\right)}{3}\pi r^2 \sqrt{16-r^2}$	

(a)	Given that $a = 0.25$,	Most students could apply the
. ,	$V = 0.0625\pi r^3 + 0.328125\pi r^2 \sqrt{16 - r^2}$	Product rule but experienced
	V = 0.0025W + 0.520125W 410 V	great difficulty in simplifying the
		expression to show the required
	$\frac{dV}{dt} = 0.1875\pi r^2 + 0.328125\pi \left[2r\sqrt{16 - r^2} + \frac{r^2(-2r)}{r^2} \right]$	equation. Only a very small
	$\frac{dr}{dr} = 0.1075 kr + 0.520125 k 27410 r + 12\sqrt{16 - r^2}$	handful of students managed to
	$\begin{pmatrix} 2 & (1 \\ 2 & 3 \end{pmatrix}$	show the expression correctly.
	$-0.1875\pi r^{2} + 0.328125\pi \left[\frac{2r(16-r^{2})-r^{3}}{r^{3}}\right]$	
	$-0.1875 m + 0.528125 m \sqrt{16 - r^2}$	
	$-0.1875\pi r^{2} + 0.328125\pi r \left(\frac{32 - 3r^{2}}{r^{2}} \right)$	
	$= 0.1875 m + 0.528125 m \left(\frac{1}{\sqrt{16 - r^2}} \right)$	
	$\mathrm{d}V$	
	For stationary $V, \frac{dV}{dr} = 0$	
	$(22, 2^2)$	
	$0.1875\pi r^2 + 0.328125\pi r \left(\frac{32-3r^2}{2}\right) = 0$	
	$\left(\sqrt{16-r^2}\right)$	
	Since $0 < r < 4$,	
	$7(32-3r^2)$	
	$r + \frac{1}{4} \left \frac{32}{\sqrt{1 - \frac{3}{2}}} \right = 0$	
	$4(\sqrt{16-r^2})$	
	$7(3r^2-32)$	
	$\frac{1}{4}\left(\frac{1}{\sqrt{16-r^2}}\right) = r$	
	$\frac{49}{9}\left(\frac{9r^4-192r^2+1024}{9r^4-192r^2+1024}\right) = r^2$	
	$16 \left(16 - r^2 \right)$	
	$49(9r^4 - 192r^2 + 1024) - 256r^2 - 16r^4$	
	49(97 - 1927 + 1024) - 2307 - 107	
	$457r^4 - 9664r^2 + 50176 = 0$	
(b)	Using G.C, since $r > 0$,	Many did not attempt this part or
	r = 3.462322463 or $r = 3.02637266$	tried to and obtained the correct
	When $r = 3.462322463$ $\frac{dV}{dV} = 0$	value of r but did not check the
	$\frac{1}{dr} = 0.402322403, \frac{1}{dr} = 0.40232403, \frac{1}{$	corresponding value of the
	$W_{1} = 2.02627266 \frac{dV}{10.700112} + 0.0000000000000000000000000000000000$	derivative.
	when $r = 3.0263/266$, $\frac{1}{dr} = 10./90112 \neq 0$	
	$h = \sqrt{16 - 3.462322463^2} = 2.00$ (to 3 s f)	
	$n = \sqrt{10} = 3.402322403 = 2.00 (10.3 8.1.)$	

Question 6 (Complex Numbers – Geometric Forms)

(i) $\frac{e^{i\theta}}{1 - e^{i\theta}} = \frac{e^{i\theta}}{e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}} \right)}$ $= \frac{e^{i\frac{\theta}{2}}}{\left(-2\sin\frac{\theta}{2} \right)i}$ $\theta \to e^{i\theta}$	Many students could not answer this part correctly. Most attempted to introduce $\frac{\theta}{2}$ by using half angle formula on $\cos \theta$ and $\sin \theta$ and could not proceed with meaningful simplification of the terms.
$= \frac{\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}}{\left(-2\sin\frac{\theta}{2}\right)i}$ $= -\frac{1}{2i}\cot\frac{\theta}{2} - \frac{1}{2}$ $= \left(\frac{1}{2}\cot\frac{\theta}{2}\right)i - \frac{1}{2}$ $= \frac{1}{2}\left(i\cot\frac{\theta}{2} - 1\right)$	Learning points: - Remember to try to factorise $e^{i\frac{\theta}{2}}$ first before other approaches when dealing with half angles in complex numbers setting.
(ii) $i = e^{i\frac{\pi}{2}}$ or $e^{i\left(-\frac{3\pi}{2}\right)}$ or $e^{i\left(\frac{5\pi}{2}\right)}$	Most students could give at least two different representations. $e^{i\left(-\frac{3\pi}{2}\right)}$ is the representation that are missed the most by the candidates.

(iii)
$$\left(\frac{w}{w+1}\right)^3 = i = e^{i\frac{\pi}{2}}$$
 or $e^{i\left(-\frac{\pi}{2}\right)}$ or $e^{i\left(\frac{5\pi}{2}\right)}$ by (ii)
 $\Rightarrow \frac{w}{w+1} = e^{i\frac{\pi}{6}}$ or $e^{i\left(-\frac{\pi}{2}\right)}$ or $e^{i\left(\frac{5\pi}{6}\right)}$
Now let $\frac{w}{w+1} = e^{i\theta}$, where $\theta = -\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$.
Then we have
 $w = e^{i\theta}w + e^{i\theta}$
 $\Rightarrow w = \frac{e^{i\theta}}{1 - e^{i\theta}} = \frac{1}{2}\left(i\cot\frac{\theta}{2} - 1\right)$ by (i)
Therefore
 $w = \frac{1}{2}\left(i\cot\left(-\frac{\pi}{4}\right) - 1\right), \frac{1}{2}\left(i\cot\left(\frac{\pi}{12}\right) - 1\right)$ or $\frac{1}{2}\left(i\cot\left(\frac{5\pi}{12}\right) - 1\right)$.
Most candidates did not write
any useful working for this
part.
Learning points:
- Exponential forms of
complex number follows the
exponential rules e.g.,
 $z^3 = e^{i\alpha}$ implies $z = e^{i\frac{\alpha}{3}}$.
Only a small number of
candidates could make the
connection with the earlier part
and manipulated to obtain
 $w = \frac{e^{i\theta}}{1 - e^{i\theta}} = \frac{1}{2}\left(i\cot\frac{\theta}{2} - 1\right)$
Of which some did not divide
the angle obtained $\theta = -\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$
 $\frac{5\pi}{6}$ by 2 in the final solution.

(i)	Common errors:
	- Many students did not apply the
Method 1	relevant formula in MF26 to
$y = \csc\left(2x + \frac{\pi}{4}\right)$	differentiate $\operatorname{cosec}\left(2x+\frac{\pi}{4}\right)$.
$\Rightarrow \frac{dy}{dx} = -2\operatorname{cosec}\left(2x + \frac{\pi}{4}\right)\operatorname{cot}\left(2x + \frac{\pi}{4}\right)$ $\Rightarrow \frac{d^2y}{dx^2} = -2\operatorname{cosec}\left(2x + \frac{\pi}{4}\right)\left(-2\operatorname{cosec}^2\left(2x + \frac{\pi}{4}\right)\right)$ $-2\operatorname{cot}\left(2x + \frac{\pi}{4}\right)\left(-2\operatorname{cosec}\left(2x + \frac{\pi}{4}\right)\operatorname{cot}\left(2x + \frac{\pi}{4}\right)\right)$ $= 4y^3 + 4y\operatorname{cot}^2\left(2x + \frac{\pi}{4}\right)$	They resorted to converting the expression into '1/sin' and used the compound angle formula to unnecessarily expand the function and this resulted in tedious work for finding the second derivative in the later part and thus little success to prove the result.
$= 4y^{3} + 4y(y^{2} - 1)$	- Similarly, some students did not know how to differentiate
$=8y^3-4y$ (shown)	$\cot\left(2x+\frac{\pi}{4}\right)$. They changed it to
$\frac{\text{Method 2}}{y = \operatorname{cosec}} \left(2x + \frac{\pi}{4} \right)$	$\frac{1}{\tan\left(2x+\frac{\pi}{4}\right)}$ and differentiated
$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -2\mathrm{cosec}\left(2x + \frac{\pi}{4}\right)\mathrm{cot}\left(2x + \frac{\pi}{4}\right)$	the function using the Chain rule. A few incorrectly thought that
$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -2y\cot\left(2x + \frac{\pi}{4}\right)$	$\frac{1}{\tan x} = \tan^{-1} x$.
$\Rightarrow \frac{d^2 y}{dx^2} = -2\frac{dy}{dx}\cot\left(2x + \frac{\pi}{4}\right) - 2y\left(-2\csc^2\left(2x + \frac{\pi}{4}\right)\right)$ $\Rightarrow \frac{d^2 y}{dx^2} = 4y\cot^2\left(2x + \frac{\pi}{4}\right) + 4y^3$	- did not apply Chain Rule fully, miss out the constant and negative sign
$\Rightarrow \frac{d^2 y}{dx^2} = 4y \left(\operatorname{cosec}^2 \left(2x + \frac{\pi}{4} \right) - 1 \right) + 4y^3$	- did not apply $1 + \cot^2 x = \csc^2 x$
$d^2 w$	Learning points: Please
$\Rightarrow \frac{d^2 y}{dx^2} = 4y(y^2 - 1) + 4y^3$	- familiarise yourselves with what
d^2	formula are given in MF26.
$\Rightarrow \frac{d^{2}y}{dx^{2}} = 4y^{3} - 4y + 4y^{3} = 8y^{3} - 4y$ (shown)	- memorise formulas for differentiating and integrating
	trigonometric functions and
	trigonometric identities that are
	not in MF26.
	- apply implicit differentiation
	wherever possible for this type of
	questions in Power Series

Method 3	
$y = \csc\left(2x + \frac{\pi}{4}\right)$	
$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -2\mathrm{cosec}\left(2x + \frac{\pi}{4}\right)\mathrm{cot}\left(2x + \frac{\pi}{4}\right)$	
$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -2y\sqrt{y^2 - 1}$	
$\Rightarrow \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 4y^2\left(y^2 - 1\right) = 4y^4 - 4y^2$	
$\Rightarrow 2\frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \left(16y^3 - 8y\right)\frac{\mathrm{d}y}{\mathrm{d}x}$	
$\Rightarrow \frac{d^2 y}{dx^2} = 8y^3 - 4y \text{(shown)}$	
Mathad 4	
$\frac{1}{1}$ (π)	
$\frac{1}{y} = \sin\left(2x + \frac{\pi}{4}\right) \qquad (1)$	
$\int \frac{y}{1} \frac{dy}{dx} \left(\frac{\pi}{2} \right)$	
$\left -\frac{1}{v^2}\frac{dy}{dx}\right = 2\cos\left(2x + \frac{3}{4}\right)$	
$\frac{\mathrm{d}y}{\mathrm{d}x} = -2y^2 \cos\left(2x + \frac{\pi}{4}\right) \qquad (2)$	
$ \begin{array}{c} dx \\ d^2y \\ dy \\ dy \\ dx \\ dx \\ dx \\ dx \\ dx \\ d$	
$\frac{d^2y}{dx^2} = -4y\frac{dy}{dx}\cos\left(2x + \frac{\pi}{4}\right) + 4y^2\sin\left(2x + \frac{\pi}{4}\right)$	
$= 8y^{3}\cos^{2}\left(2x + \frac{\pi}{4}\right) + 4y^{2}\sin\left(2x + \frac{\pi}{4}\right) \text{ (from (2))}$	
$=8y^{3}\left(1-\sin^{2}\left(2x+\frac{\pi}{4}\right)\right)+4y^{2}\sin\left(2x+\frac{\pi}{4}\right)$	
$= 8y^{3}\left(1 - \frac{1}{y^{2}}\right) + 4y^{2} \cdot \frac{1}{y} \text{ (from (1))}$	
$=8y^3-8y+4y$	
$=8y^3-4y$ (shown)	

(ii)
$$\frac{d^2 y}{dx^2} = 8y^3 - 4y \Rightarrow \frac{d^3 y}{dx^3} = 24y^2 \frac{dy}{dx} - 4\frac{dy}{dx}$$

When $x = 0$,
 $y = \operatorname{cosec}\left(\frac{\pi}{4}\right) = \sqrt{2}$
 $\frac{dy}{dx} = -2\operatorname{cosec}\left(\frac{\pi}{4}\right)\operatorname{cot}\left(\frac{\pi}{4}\right) = -2\sqrt{2}$
 $\frac{d^2 y}{dx^2} = 8\left(\sqrt{2}\right)^3 - 4\sqrt{2} = 12\sqrt{2}$
 $\frac{d^3 y}{dx^3} = 24(2)\left(-2\sqrt{2}\right) - 4\left(-2\sqrt{2}\right) = -88\sqrt{2}$

Hence

$$\operatorname{cosec}\left(2x + \frac{\pi}{4}\right) \approx \sqrt{2} + \left(-2\sqrt{2}\right)\frac{x}{1!} + \left(12\sqrt{2}\right)\frac{x^2}{2!} + \left(-88\sqrt{2}\right)\frac{x^3}{3!}$$
$$= \sqrt{2} - 2\sqrt{2}x + 6\sqrt{2}x^2 - \frac{44}{3}\sqrt{2}x^3$$

(iii) Differentiating the expansion above, we get

$$-2\operatorname{cosec}\left(2x + \frac{\pi}{4}\right)\operatorname{cot}\left(2x + \frac{\pi}{4}\right) \approx -2\sqrt{2} + 12\sqrt{2}x - 44\sqrt{2}x^{2}.$$
Therefore

$$\cos\operatorname{ec}\left(2x + \frac{\pi}{4}\right)\operatorname{cot}\left(2x + \frac{\pi}{4}\right) \approx \sqrt{2} - 6\sqrt{2}x + 22\sqrt{2}x^{2}.$$
Let $2x + \frac{\pi}{4} = \frac{13\pi}{50}$. Then $x = \frac{\pi}{200}$.
Hence

$$\operatorname{cosec}\left(\frac{13\pi}{50}\right)\operatorname{cot}\left(\frac{13\pi}{50}\right) \approx \sqrt{2}\left(1 - 6\left(\frac{\pi}{200}\right) + 22\left(\frac{\pi}{200}\right)^{2}\right)$$

$$\approx \sqrt{2}\left(1 - \frac{3}{100}\pi + \frac{11}{20000}\pi^{2}\right)$$

Common errors: $\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = 24y^2 - 4$ obtained or differentiated $8y^3$ w.r.t x wrongly. did not simplify coefficient to $k\sqrt{2}$ a few wrote the Maclaurin series as a sum of powers of $\left(x + \frac{\pi}{4}\right)$ Learning points: Maclaurin's Theorem can be referenced from MF26 formula. Show working to find the values of y, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$, $\frac{d^3y}{dx^3}$ when x = 0 first, before substituting the values into the Maclaurin series coefficients. Doing these simultaneously usually results in arithmetic errors. Poorly attempted. Many students left this part blank or just substituted x = $\pi/200$ or $x = \pi/100$ into their answer in part (ii) and consequently were stuck with $\cot(x + \pi/4)$.

Learning points:

'Hence' implies there is a need to apply the results from the previous parts. Observe that $\csc\left(2x + \frac{\pi}{4}\right) \cot\left(2x + \frac{\pi}{4}\right)$ $\approx \left(-\frac{1}{2}\right) \frac{dy}{dx}$. Differentiate the answer in part (ii)

w.r.t x first before substituting $x = \pi/200$. Students who attempted to do these together in one step usually made arithmetic errors.

Question 8 (Sequences and Series)

(a) For $n \ge 2$,	Common errors:
$u_n = An^2 + Bn + 2^{n+1} - (A(n-1)^2 + B(n-1) + 2^n)$	- take $S_3 = 21$ and $S_5 = 53$
$ \begin{array}{c} n \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	- did not simplify
$= An^{-} + Bn + 2^{m^{-}} - (An^{-} - 2An + A + Bn - B + 2^{-})$	$2^{n+1} - 2^n = 2(2^n) - 2^n = 2^n$
$= 2(2^{n}) + 2An - A + B - 2^{n} = 2^{n} + (2n-1)A + B$	- tried to apply AP/GP formula
	- wrote $u_n = S_{n+1} - S_n$
$u_3 = 2^3 + (2(3) - 1)A + B = 21 \Longrightarrow 5A + B = 13 \cdots (1)$	- did not check for u_1 and S_1 . Only a
	handful of students got the correct answer
$u_5 = 2^5 + (2(5) - 1)A + B = 53 \Longrightarrow 9A + B = 21 \cdots (2)$	for u_n .
Solving (1) and (2). $A = 2$ and $B = 3$. Hence	Learning points:
$\begin{bmatrix} 2(1)^2 + 3(1) + 2^{1+1}, & n = 1 \end{bmatrix} \begin{bmatrix} 9, & n = 1 \end{bmatrix}$	To find u_n from S_n , use
$ u_n = \begin{cases} 2^n + 4n + 1 & n > 2 \\ 2^n + 4n + 1 & n > 2 \end{cases}$	$u_n = S_n - S_{n-1}, n \ge 2$ (*). Please check if the
	formula (*) is consistent with (i.e. is equal to)
	S_n for $n = 1$. If it is not, you need to write u_n
	as a piecewise function of n , and write
	$u_1 = S_1$ separately. If it is, the answer can be
	written as a single function
	$u_n = S_n - S_{n-1}, \ n \ge 1.$
(D)(1)	Common errors:
$\left \sum_{n=1}^{n} \ln\left(\frac{r(r+2)}{r}\right) - \sum_{n=1}^{n} \ln\left(\frac{r+2}{r}\right) - \ln\left(\frac{r+1}{r}\right)\right $	- could not apply laws of logarithm to
$\sum_{r=1}^{m} \prod_{r=1}^{m} \binom{r}{(r+1)^2} = \sum_{r=1}^{m} \binom{m}{r+1} \prod_{r=1}^{m} \binom{r}{r}$	$\ln r - 2\ln(r+1) + \ln(r+2)$ or
$\left(\begin{array}{c} (3) \end{array} \right)$	(r+2) $(r+1)$
$=\left(\ln\left(\frac{1}{2}\right)-\ln 2\right)$	$\ln\left(\frac{1}{r+1}\right) - \ln\left(\frac{1}{r}\right)$ or
$+(\ln(4)-\ln(3))$	$\ln\left(\frac{r}{r}\right) - \ln\left(\frac{r+1}{r}\right)$ that would allow
$\left(\left(\frac{1}{3} \right) \right) = \left(\frac{1}{2} \right) $	(r+1) $(r+2)$
:	for the method of differences to be
$\left(\left(\begin{array}{c} n \\ n \end{array} \right) \right)$	rewrote as $\ln(r^2 + 2r) \ln(r + 1)^2$ or
$\left + \left(\ln \left(\frac{1}{n} \right) - \ln \left(\frac{1}{n-1} \right) \right) \right $	attempted to use partial fractions with
(, (n+2), (n+1))	little success.
$\left + \left(\ln \left(\frac{n+1}{n+1} \right) - \ln \left(\frac{n}{n} \right) \right) \right $	- did not put brackets properly, please note
(n+2)	that $\sum_{n=1}^{n} \left(\ln\left(\frac{r+2}{r+1}\right) - \ln\left(\frac{r+1}{r+1}\right) \right)$
$= -\ln 2 + \ln \left(\frac{n+1}{n+1} \right)$	$\sum_{r=1}^{n} \binom{m}{r+1} \binom{r}{r}$
$=\ln\left(\frac{n+2}{n+1}\right) - \ln 2$ (shown)	$\neq \sum_{r=1}^{n} \ln\left(\frac{r+2}{r+1}\right) - \ln\left(\frac{r+1}{r}\right)$
	- not cancelling the terms properly (or not
	cancelling any single term). Not showing
	at least one full cancellation above and at
	least one full cancellation below.

Alternative Solution	Learning points:
$\sum_{r=1}^{n} \ln\left(\frac{r(r+2)}{(r+1)^2}\right) = \sum_{r=1}^{n} \left(\ln r - 2\ln(r+1) + \ln(r+2)\right)$ = $\left(\ln 1 - 2\ln(2) + \ln(3)\right)$ + $\left(\ln 2 - 2\ln(3) + \ln(4)\right)$ + $\left(\ln 3 - 2\ln(4) + \ln(5)\right)$:	 For the alternative solution, you need to write 1st 3 rows and last 3 rows so that one full cancellation above and one full cancellation below are shown. For "Show" type of MOD question, you need to write out the terms after cancellation before the final shown answer.
$+(\ln(n-2)-2\ln(n-1)+\ln(n))$	
$+(\ln(n-1)-2\ln(n)+\ln(n+1))$	
$+(\ln(n) - 2\ln(n+1) + \ln(n+2))$	
$= \ln 1 - \ln 2 - \ln(n+1) + \ln(n+2)$	
$= \ln(n+2) - \ln(n+1) - \ln 2$	
$= \ln\left(\frac{n+2}{n+1}\right) - \ln 2 \text{(shown)}$	
(b)(ii)	Common errors:
$\sum_{r=0}^{n} \ln\left(\frac{r^{2}+4r+3}{(r+2)^{2}}\right) = \sum_{r=0}^{n} \ln\left(\frac{(r+1)(r+3)}{(r+2)^{2}}\right)$ $= \sum_{q=1}^{q-1=n} \ln\left(\frac{q(q+2)}{(q+1)^{2}}\right)$ $= \sum_{q=1}^{q=n+1} \ln\left(\frac{q(q+2)}{(q+1)^{2}}\right)$ $= \ln\left(\frac{n+1+2}{n+1+1}\right) - \ln 2$ $= \ln\left(\frac{n+3}{n+2}\right) - \ln 2$	 Many could not perform the appropriate substitution to manipulate the current series to "appear" like the previous series. Many started with the series in part (b)(i) and could not proceed or could not get the correct answer. Learning points: As the general term is different from the series in part (b)(i), the correct technique is to use the substitution method. Starting from the current series, replace r with q - 1, change the general term to that in part (b)(i) and then replace the lower and upper limit with q - 1 = 0 and q-1=n.

(a)	$\mathbf{v} = (x^2 + cx)\mathbf{e}^{-x}$	Please note that in questions that require
		a proof, it is important to demonstrate
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x+c)\mathrm{e}^{-x} - (x^2+cx)\mathrm{e}^{-x}$	your reasoning and justify steps where necessary.
	$= \left(-x^2 - cx + 2x + c\right) \mathrm{e}^{-x}$	Common mistakos:
	$(r^2+(c-2)r-c)e^{-r}$	common mistakes. x not stating " $a^{-x} > 0$ (or $a^{-x} \neq 0$) for
	$= \left(x + (c - 2)x - c \right)c$	all $r \in \mathbb{R}$ "in the proof at the step of
	At stationary points $\frac{dy}{dt} = 0$	an $x \in \mathbb{R}$ in the proof at the step of
	$\frac{dx}{dx}$	dividing throughout by e .
	$-(x^{2}+(c-2)x-c)e^{-x}=0$	short of explaining why both roots are
	$x^{2} + (c-2)x - c = 0$ (:: $e^{-x} > 0$ for all $x \in \mathbb{R}$).	real.
		× computing the discriminant of
	Discriminant, $D = (c-2)^2 - 4(1)(-c)$	$(x^2 + (c-2)x - c)e^{-x}$. This is incorrect because the expression
	$=c^{2}-4c+4+4c$	above is NOT a quadratic expression
	$=c^2+4 \ge 4 > 0$ for all $c \in \mathbb{R}$.	in x , so it is meaningless to talk about
	\therefore The equation $\frac{dy}{dt} = 0$ has two real and distinct	the discriminant of
	dx	$(x^2+(c-2)x-c)e^{-x}$.
	roots.	× writing the discriminant as
	Therefore the curve with equation $y = (r^2 + cr)e^{-r}$	" $b^2 - 4ac$ " when c is already used in
	Therefore, the curve with equation $y = (x + cx)c$	the question.
	has two stationary points for all real values of c.	writing $c^2 > 0$ for all real values of c. The correction couplitude $c^2 > 0$ for all
		The correct inequality is $c \ge 0$ for all real values of c
		\times assuming that "discriminant >0"
		straightaway. This is incorrect
		because you are assuming precisely
		what you need to prove.
		≭ trying to show that
		" discriminant ≥ 0 " instead of
		"discriminant > 0". Recall your O-
		Level content on discriminants.
		★ It is appalling that a notable number
		of students expanded $(c-2)^2$ as
		$c^2-2c+4.$

For C_1 :	For C_2 :	C
$x^2 + 4y^2 - 6x - 7 = 0$	$y = \frac{2x-3}{2x-3}$	m
$x^2 - 6x + 9 - 9 + 4y^2 = 7$	y = x - 1	0
$(x-3)^2 + 4y^2 = 16$	$=2-\frac{1}{x-1}$	С
$\frac{\left(x-3\right)^2}{16} + \frac{y^2}{4} = 1$		×
y $x = 1$		×
		×
(0,3)	(4.95,1.75)	
=2 (1.5,0) (-1,0) (1.26,-1.80) (3,-2) (3,-2)	C_2 C_1 C_1 C_1	×
	For C_1 : $x^2 + 4y^2 - 6x - 7 = 0$ $x^2 - 6x + 9 - 9 + 4y^2 = 7$ $(x - 3)^2 + 4y^2 = 16$ $\frac{(x - 3)^2}{16} + \frac{y^2}{4} = 1$ (0,3) (3,2) (1.26, -1.80) (3,0) (1.26, -1.80) (3, -2)	For C_1 : $x^2 + 4y^2 - 6x - 7 = 0$ $x^2 - 6x + 9 - 9 + 4y^2 = 7$ $(x - 3)^2 + 4y^2 = 16$ $(x - 3)^2 + 4y^2 = 16$ $(0,3)^2$ (1,5,0) (3,2) (4.95,1.75) = 2 (1.5,0) (1.26, -1.80) (3,-2) (3,-2) (1,26, -1.80) (3,-2) (1,26, -1.80) (3,-2)

 C_2 was generally well-sketched, but many mistakes were made in the sketch of C_1 .

Common mistakes:

- \times completing the square incorrectly. Please note that there is no y term in the equation of the ellipse.
- * missing labels such as coordinates of centre and vertices of the ellipse, points of intersection between the curves, equations of the curves (or at least C_1 and C_2), and the origin.
- The positions of C_1 and C_2 relative to each other are not accurate. For example, the top of the ellipse not touching the asymptote y = 2 at one point, or the point (1.5,0) is too near
- or to the right of the point (3,0).
- * sketching a hyperbola instead of an ellipse.

Question 10 (Functions)

(i) For
$$-4 < x < -1$$
, $f(x) = -(x+1)^2$
Let $y = -(x+1)^2$.
 $(x+1)^2 = -y$
 $x+1 = \pm \sqrt{-y}$
Since $-4 < x < -1$, $x = -1 - \sqrt{-y}$
For $-1 \le x \le 2$, $f(x) = (x+1)^2$
Let $y = (x+1)^2$.
 $(x+1)^2 = y$
 $x+1 = \pm \sqrt{y}$
Since $-1 \le x \le 2$, $x = -1 + \sqrt{y}$
Since $-1 \le x \le 2$, $x = -1 + \sqrt{y}$
Thus,
 $f^{-1}(x) = \begin{cases} -1 - \sqrt{-x}, & \text{for } x \in \mathbb{R}, -9 < x < 0, \\ -1 + \sqrt{x}, & \text{for } x \in \mathbb{R}, 0 \le x \le 9. \end{cases}$
Many assumed that $\sqrt{-y}$ should be rejected, not realising that y can be negative. Hence many omitted the rule $-1 - \sqrt{-x}$.
Unfortunately, there are still a lot of students who did not consider $\pm \sqrt{-x}$ and did not use the domain of the function to determine the correct square root. The skill of choosing the correct square root has been tested so many times in many topics and thus it is expected that candidates should have a good grasp of this skill by now.
Another group of students recalled the relevance of \pm but were unsure where it should be placed and hence modulus signs were used everywhere without proper consideration. Examples include $-1 \pm \sqrt{|x|}$, $\sqrt{|x|} \pm 1$, $1 + |\sqrt{x}|$ etc.
Domains of the inverse were NOT properly thought through, with many thinking that the value -1 was relevant since the rule was $-1 \pm \sqrt{\dots}$.

(ii) 	y (2,9) (9,9) (9,2) (9,2) (-9,-4) (-9,-9) (-4,-9)	For such questions, details are necessary, including domains , nature of turning points , inclusion and exclusion of points and symmetrical properties . Many did not sketch the graphs to scale and hence made the diagram awkward-looking. The composite function $y = \text{ff}^{-1}(x)$ was poorly sketched with many not paying attention to the domain. This type of questions has appeared many times in practice questions and revision. Thus, it is expected that candidates should not be scoring 2 marks or less for such questions.
(iii)	For $f(x) = f^{-1}(x)$, $f(x) = x$. From the graph, intersection occurs for $-4 < x \le -1$. Thus $-(x+1)^2 = x$ $x^2 + 2x + 1 = -x$ $x^2 + 3x + 1 = 0$ $x = \frac{-3 \pm \sqrt{3^2 - 4}}{2}$ $x = \frac{-3 \pm \sqrt{5}}{2}$ $x = \frac{-3 - \sqrt{5}}{2}$ ($\because x < -1$) Thus, for $f(x) \le f^{-1}(x)$, $-4 < x \le \frac{-3 - \sqrt{5}}{2}$.	The use of calculator is not allowed since there is an 'exact' requirement. Unfortunately, candidates still left their answers in non-exact form. The skill of equating $f(x)$ to x to solve the inequality is also available in practice questions. Candidates should use the graph to decide the correct rule of $f(x)$ to equate to x. If so, at least 2 marks would have been easily obtained.

Question 11 (Differential Equations)

(i)	Since $p = \frac{1}{k} \frac{dy}{dx}, \ \frac{dy}{dx} = kp. \ \therefore \frac{d^2 y}{dx^2} = k \frac{dp}{dx}$ $\frac{d^2 y}{dx^2} = ak \sqrt{1 + \left(\frac{1}{k} \frac{dy}{dx}\right)^2}$ $\Rightarrow k \frac{dp}{dx} = ak \sqrt{1 + p^2}$ $\Rightarrow \frac{dp}{dx} = a\sqrt{1 + p^2} \text{ (shown)}$	Some students were confused about what to do here. A number of students skipped critical steps.
(ii)	$p = \tan u \Rightarrow \frac{dp}{dx} = \frac{dp}{du} \times \frac{du}{dx} = (\sec^2 u) \frac{du}{dx}.$ Thus, $\frac{dp}{dx} = a\sqrt{1+p^2}$	Many students were not familiar with the procedure to solve a differential equation via a given substitution. For some, their reductions even led to an equation that was void of any derivative. Please revise.
	$\Rightarrow (\sec^2 u) \frac{du}{dx} = a \sqrt{1 + \tan^2 u}$ $\Rightarrow (\sec^2 u) \frac{du}{dx} = a \sec u$ $\boxed{\frac{\text{Remember that}}{\sec^2 u = 1 + \tan^2 u}}$ $\boxed{\frac{\text{Since the DE is of the form}}{\frac{du}{dx} = g(u), \text{ simplify as}}}$ $\Rightarrow \sec u \frac{du}{dx} = a$ $\boxed{\frac{1}{g(u)} \frac{du}{dx} = 1} \Rightarrow \int \frac{1}{g(u)} \frac{du}{du} = \int 1 dx.$ $\Rightarrow \int \sec u du = \int a dx$ $\boxed{\text{Integral formula for the secant function is in MF26.}}$	Some students could not apply the technique needed to solve this DE (method of separation). Workings such as $p = \int \sqrt{1+p^2} dx$ and $u = \int \sec u dx$ were fairly common. Some students approached the question as one on integration by substitution, which is acceptable. However, many of these students simplified $\int \frac{1}{\sqrt{1+p^2}} dp$ incorrectly to $\int \frac{1}{\sqrt{1+\tan^2 u}} \times \frac{1}{\sec^2 u} du$.
	$\Rightarrow \ln\left(\sec u + \tan u\right) = ax + c \because u < \frac{\pi}{2}$	From MF26, if $ u < \frac{\pi}{2}$, $\int \sec u du$ is
	$\Rightarrow \ln(\sqrt{1+p^2}+p) = ax+c$ (Note: $p = \tan u \Rightarrow \sec^2 u = 1+p^2$) $\Rightarrow \sqrt{1+p^2} + p = e^{ax+c}$	modulus is required. Working with modulus should be as follows: $\int \sec u du = \int a dx$ $\Rightarrow \ln \sec u + \tan u = ax + c$ $\Rightarrow \sec u + \tan u = e^{ax+c}$
	$\Rightarrow \sqrt{1+p^2} + p = Ae^{ax}, A = e^c$	$\Rightarrow \sec u + \tan u = \pm e^{ax+c} = \pm e^{c}e^{ax}$ $\Rightarrow \sec u + \tan u = Ae^{ax}, A = \pm e^{c}$ Some students had no modulus but still had a ± later. This is incorrect.

(ii)	Since the turning point lies on the <i>y</i> -axis, when $x = 0$,	Some students could not convert
		sec <i>u</i> to $\sqrt{1+p^2}$. Please use
	$p = \frac{1}{k} \frac{dy}{dx} = 0$. Hence, $\sqrt{1+0^2} + 0 = Ae^0 \Longrightarrow A = 1$. So,	trigonometric identities or the right- angled triangle method:
	$\sqrt{1+p^2} + p = e^{ax} \Rightarrow \sqrt{1+p^2} = e^{ax} - p$	$\sqrt{1+p^2}$ p
	$\Rightarrow 1 + p^{2} = \left(e^{ax} - p\right)^{2} = e^{2ax} - 2pe^{ax} + p^{2}$	
	$\Rightarrow 2pe^{ax} = e^{2ax} - 1$	$\sec u = \frac{\text{hyp}}{\text{adj}} = \sqrt{1 + p^2}$
	$\Rightarrow p = \frac{e^{2ax} - 1}{2e^{ax}} = \frac{e^{ax} - e^{-ax}}{2} \text{ (shown)}$	To simplify an equation comprising a surd, isolate the surd term on its own on one side of the equation first, before squaring both sides.
(iii)	1 dy $e^{-0.0329x} - e^{0.0329x}$	Common errors:
	$\frac{1}{0.701} \frac{1}{dx} = \frac{2}{1} \frac{1}{(e^{-0.0329x} - e^{0.0329x})}$	Considering $\frac{d^2 y}{dx^2}$ (which is
	$y = 0.701 \int \frac{e^{-1} - e^{-1}}{2} dx$ $= \frac{0.701}{2} \left(\frac{e^{-0.0329x}}{-0.0329x} - \frac{e^{0.0329x}}{-0.0329x} \right) + d$	pointless for this question part; please integrate part (ii) result) $e^{0.0329x} = e^{0.0329} \times e^{x}$
	$2 \left(-0.0329 0.0329\right)^{-1}$ $= d - 10.653 \left(e^{-0.0329x} + e^{0.0329x}\right)$	(demonstrating very poor grasp of the laws of indices, a <i>Secondary Math</i> concept)
	Since $y = 192$ when $x = 0$,	• $e^{-0.0329x} - e^{0.0329x} = 2e^{(\text{something})x}$ (thinking that the exponents can
	$192 = d - 10.653 \left(e^{-0.0329(0)} + e^{0.0329(0)} \right)$ $\Rightarrow d = 213 \text{ (to 3 s.f.)}$	somehow be combined even though the powers are unequal)
		$\int e^{0.0329x} dx = 0.0329 e^{0.0329x} + c$
	OR	(differentiating instead of integrating)
	Since $y = 0$ when $x = 91$, $0 = d - 10.653 \left(e^{-0.0329(91)} + e^{0.0329(91)} \right)$	forgetting to include the arbitrary constant (which is a lethal
	$\Rightarrow d = 213 \text{ (to 3 s.f.)}$	mistake for a differential equation problem)
	Thus, $y = 213 - 10.7 \left(e^{-0.0329x} + e^{0.0329x} \right)$ (to 3 s.f.)	leaving the final solution with an arbitrary constant (The curve has a fixed position in the x-y plane;
		thus clearly this question requires a <i>particular</i> solution.) Since $y = 192$ when $x = 0, d$ (or
		c) = 192." (being very flippant and not paying due diligence in evaluating the arbitrary constant, thus failing to realise that $e^0 = 1$ and not 0)
		 not simplifying the final answer

(i) π_1 : $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = 25$ and π_2 : $\mathbf{r} \cdot \begin{pmatrix} 1 \\ k \\ -2 \end{pmatrix} = -15$	 Skills/Concepts Tested Find the equation of the line of intersection between two planes without the use of GC by
Substituting $(x, 0, z)$. $\begin{pmatrix} x \\ 0 \\ z \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = 5 \Rightarrow 2x + z = 25 \dots (1)$ $\begin{pmatrix} x \\ 0 \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ k \\ -2 \end{pmatrix} = -3 \Rightarrow x - 2z = -15 \dots (2)$	 solving two equations with three unknowns through expressing two variables in terms of the third, or finding the point on the line and the direction of the line (i.e. cross product of the normal vectors of the two planes). Write an equation of a line
Solving (1) and (2), we get $x = 7$ and $z = 11$. Thus the position vector of such a point on l_1 is $\begin{pmatrix} 7 \\ 0 \\ 11 \end{pmatrix}$. Direction vector of $l_1 = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ k \\ -2 \end{pmatrix} = \begin{pmatrix} 6-k \\ 1-(-4) \\ 2k+3 \end{pmatrix} = \begin{pmatrix} 6-k \\ 5 \\ 2k+3 \end{pmatrix}$ Hence a vector equation of l_1 is $\mathbf{r} = \begin{pmatrix} 7 \\ 0 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 6-k \\ 5 \\ 2k+3 \end{pmatrix}, \lambda \in \mathbb{R}$	 Common Mistakes Interpreted "independent of k" as letting k = 0 Did erroneous workings to find k before proceeding to use GC to find the equation of the line of intersection Did not know what to get out from "solving the 2 equations with 3 unknowns" hence the workings appeared aimless Careless algebraic manipulation Missing "r = " and/or "λ ∈ ℝ" when writing an equation of a line
	- Poorly attempted
	1 oony allompted

(i) Alternatively,	
$\pi_1: \mathbf{r} \cdot \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = 5 \Longrightarrow 2x - 3y + z = 25 \dots (1) \text{ and}$	
$\pi_2: \mathbf{r} \cdot \begin{pmatrix} 1\\k\\-2 \end{pmatrix} = -3 \Longrightarrow x + ky - 2z = -15 \dots (2)$	
Take $y = t$. Then	
(1): $2x - 3t + z = 25 \Longrightarrow z = 25 + 3t - 2x$ (3)	
$(2): x + kt - 2z = -15 \tag{4}$	
Substituting equation (3) into (4), $x + kt - 2(25 + 3t - 2x) = -15$ $x + kt - 50 - 6t + 4x = -15$ $5x + (k - 6)t = 35$ $x = 7 + \left(\frac{6 - k}{5}\right)t$ Substituting into equation (3), $z = 25 + 3t - 2\left[7 + \left(\frac{6 - k}{5}\right)t\right]$ $(12 - 2k)$	
$= 25 + 3t - 14 - \left(\frac{12 - 2k}{5}\right)t$ $= 11 + \left(\frac{3 + 2k}{5}\right)t$	
Thus, l_1 has equation	
$\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ 11 \end{pmatrix} + t \begin{pmatrix} \left(\frac{6-k}{5}\right)t \\ t \\ \left(\frac{3+2k}{5}\right)t \end{pmatrix}, \ t \in \mathbb{R} \text{ or }$	
$\mathbf{r} = \begin{pmatrix} 7\\0\\11 \end{pmatrix} + \lambda \begin{pmatrix} 6-k\\5\\2k+3 \end{pmatrix}, \ \lambda = \frac{t}{5} \in \mathbb{R}$	

Suppose both lines are parallel, we have $\frac{\text{Common Mi}}{(6-k)}$ - Students	<u>pts Tested</u> s are NOT parallel and rsecting questions, students are to assume the lines ARE and intersecting to find ue(s) of k before ag that k CANNOT take ues found
$\begin{bmatrix} 5\\ 2k+3 \end{bmatrix} = t \begin{bmatrix} 1\\ -1 \end{bmatrix}$. Then $t = 5$. For <i>x</i> -coordinate: $6-k = 3(5) \Rightarrow k = -9$ For <i>z</i> -coordinate: $2k+3 = -5 \Rightarrow k = -4$ Hence we conclude lines are not parallel regardless of <i>k</i> . Suppose both lines are intersecting, we have $\begin{pmatrix} 7\\ 0\\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 6-k\\ 5\\ 2k+3 \end{pmatrix} = \begin{pmatrix} -15\\ 0\\ 0 \end{pmatrix} + \beta \begin{pmatrix} 3\\ 1\\ -1 \end{pmatrix}$ Then $\beta = 5\lambda$ and $7 + \lambda(6-k) = -15 + 3(5\lambda) \Rightarrow \lambda(k+9) = 22$ and $11 + \lambda(2k+3) = -5\lambda \Rightarrow \lambda(k+4) = -\frac{11}{2}$ Hence $\frac{k+9}{k+4} = -4 \Rightarrow k+9 = -4k - 16 \Rightarrow k = -5$ Therefore for both lines to be skew, <i>k</i> can be any real number except -5	istakesdid not attempt to find(s) of k when the linesel. For the few who did,not carry out correctfor this or did nothe "solutions" correctlysuming that the 2 linesstudents left k in termswns and did not knowneed to find the value(s)(which is expected inon)attempted to directlyquations like $() \neq ()$ mentstents did not attempt thisew who did, it was veryempted.

(iii)	Skills/Concepts Tested
(7) (2)	- Find distance between two skew
$\overrightarrow{OA} = \begin{vmatrix} 0 \\ + \lambda \end{vmatrix}$ 5 for some $\lambda \in \mathbb{R}$	lines by
	- identifying two points A (on
	one line) and B (on the other
(-15) (3)	line) such that A and B are
$\overrightarrow{OB} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{ for some } \beta \in \mathbb{R}$	nearest to each other (i.e. \overrightarrow{AB} is perpendicular to both lines).
Then we have $\overrightarrow{AB} \cdot \begin{pmatrix} 2\\5\\11 \end{pmatrix} = 0$ and $\overrightarrow{AB} \cdot \begin{pmatrix} 3\\1\\1 \end{pmatrix} = 0$	is the distance between A and B is the distance between the skew lines, or
$\begin{pmatrix} (11) & (-1) \\ (-22+3\beta-2\lambda) (2) \end{pmatrix}$	- identifying a point on each line, say C on one line and D on the other and finding the
i.e. $\begin{vmatrix} \beta - 5\lambda \\ -11 - \beta - 11\lambda \end{vmatrix}$ $\begin{vmatrix} 5 \\ 11 \end{vmatrix} = 0 \Rightarrow -150\lambda = 165 \Rightarrow \lambda = -\frac{11}{10}$	length of projection of \overrightarrow{CD}
$(-22+3\beta-23)(3)$	on the direction vector that is
$\begin{bmatrix} -22+5p-2\lambda & 5 \\ 0 & 51 & 1 \\ 0 & 51 & 1 \\ \end{bmatrix} = 0 \rightarrow 110 55 \rightarrow 0 5$	with the use of an appropriate
$ \begin{pmatrix} \rho - 5\lambda \\ -11 - \beta - 11\lambda \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0 \Rightarrow 11\rho = 55 \Rightarrow \rho = 5 $	formula
$(-22+3\beta-2\lambda)$ (-4.8)	Common Mistakes
Therefore $\overrightarrow{AB} = \begin{vmatrix} \beta - 5\lambda \end{vmatrix} = \begin{vmatrix} 10.5 \end{vmatrix}$.	- Use of wrong formula/vectors to
$-11 - \beta - 112$ -39	compute the distance
	- Let $\overrightarrow{AB} = \begin{pmatrix} x \\ y \end{pmatrix}$ and attempt to
$ \qquad \qquad$	
Hence $ AB = \sqrt{(-4.8)^2 + (10.5)^2 + (-3.9)^2} = \sqrt{\frac{4}{2}}$	solve for the 3 unknowns with only 2 equations instead of
	expressing \overrightarrow{AB} using the equations of l_1 and l_2 which yields 2 unknowns
	Overall Commonts
	- Poorly attempted
	- A handful of students were not successful with this part because they did not get the correct answer
	In (1). - It is commendable that there were students who could not get any
	answer in (i) made use of $k = 4$ and GC to find the equation of l
	to make some progress in this part
	part.

(iv)	Let the acute angle between l_2 and π_1 be θ .	Skills/Concepts Tested
	$\sin \theta = \frac{\begin{vmatrix} 3 \\ 1 \\ -1 \end{vmatrix} \begin{pmatrix} 2 \\ -3 \\ 1 \end{vmatrix}}{\sqrt{11}\sqrt{14}} = \frac{2}{\sqrt{154}}$	 Use an appropriate formula to find the acute angle between a line and a plane directly <u>Common Mistakes</u> Many students gave the acute angle instead of the sine of the acute angle hence losing 1 mark
		 Overall Comments More students could get at least 1 mark for this part Many students did not include the modulus function in the formula but still get the correct answer since the dot product in the numerator is positive.
(v)	Let that shortest distance be d. $\sin \theta = \frac{\sqrt{\frac{297}{2}}}{d} = \frac{2}{\sqrt{154}}$ $\Rightarrow d = 75.6 \text{ (to 3 s.f.)}$	Skills/Concepts Tested - Visualisation and linkage to the earlier parts Common Mistakes - Students used the formula for length of projection to find the
		shortest distance