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1 By using the substitution ,y x solve the inequality 
2

3
1.

1

x

x





 [3] 

2 Obtain a formula for 
 1

 

2

21
2

tan 2
d

1 4

n x
x

x



  in terms of n, where 0.n 
 

 

Hence evaluate 
 1

 

2

21
2

tan 2
d

1 4

x
x

x



   exactly.     [4] 

 

3 Express 
2

9

x

x




 as a series in ascending powers of x , up to and including the term in 

2.x   [3] 

By using only the first two terms in the series expansion above and substituting
1

9
x  , 

find an approximation for 5  in the form 
p

q
 expressed in its lowest terms, where 

 and p q  are integers to be determined. [2] 

 

4 Given f( )
( 1)!

r
r

r



,  show that 

2 3 1
f( 1) f( ) .

( 1)!

r r
r r

r

 
  


  [2] 

(i)  Hence find 
2

2

3 1

( 1)!

n

r

r r

r

 
 . [3] 

(ii)  State the value of 
2

2

3 1

( 1)!r

r r

r





 
 ,  justifying your answer. [2] 

 

5 A function f is defined as f ( ) ln(5 ),  5.x x x    

(a) Find the volume of revolution when the region bounded by the curve of 

f ( )y x  and the x- and y-axes is rotated completely about the y-axis. Give your 

answer correct to 2 decimal places.  [2] 

(b)  (i) State the set of values of x for which    f | | fx x .   [1] 

(ii)  Evaluate the value of    
9 0
2

90
2

,f d f | | dx x x x


   giving your answer in 

the form ln 2,a b  where a and b are constants to be determined.  [5] 
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6 It is given that
1cose .xy


  

(i) Show that  
2

2
2

d d
1 .

d d

y y
x x y

x x
    [3] 

(ii) Find the Maclaurin’s series for y with exact coefficients, up to and including  

 the term in 3.x   [3] 

(iii) Hence find the expansion of  
2

1cose

1

x

x




   

up to and including the term in 2x and 

estimate the gradient of the tangent of 
1cose xy


  at 0.5.x   [3] 

 

7 Referred to the origin O, the points A and B are such that OA  a


 and .OB  b


 The 

point C lies on OB such that OC pOB
 

, where p is a constant.  D is on AC such that 

AD : DC = 2 : 3 and E is on AB such that AE : EB = 1 : 3. 

(i) Find OD


 and OE


in terms of a, b and p. [2] 

(ii) Given that O, D and E are collinear, find p. [3] 

 (iii) If OB = 5, show that the shortest distance from E to OB can be expressed as

k a b , where k is a constant to be found.  [3] 

(iv) Give a geometrical interpretation of ˆa b . [1] 

 

8 The curve C has equation 

 2 1

1

x x
y

x

 



, 1,x   

where   is a constant.  Find 

(i) the equations of the asymptotes of C,  [2] 

(ii) the range of values for   such that C has 2 stationary points for 0.x   [4] 

For the range of values for   obtained in (ii), sketch, on separate diagrams, the 

graphs of 

(iii) C, [2] 

(iv)  f 'y x , where    2 1
f ,  1,

1

x x
x x

x

 
 


  [2] 

indicating the coordinates of the points where the graphs cut the x-axis and the 

equations of asymptotes, if any. [Turn over 
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9 (a) Solve 4 4 4 3 i,z     expressing your answers in the form ie ,r   where 0r   

and .      (You do not need to list out the roots.) [3] 

Hence solve  4 1 3 i,w     expressing your answers in a similar form. [3] 

 

 (b) Given 
2

2, arg( ) , 7 and arg( )
3 3

p p q q
 

     , determine the modulus 

and argument of 
7

3

p

q
. Hence express 

7

3

p

q
 in the form ix y , where , .x y  [4] 

  State the smallest positive integer n such that 
7

3

n
p

q

 
 
 

 is real and negative. [1] 

 

10 The functions f and g are defined by 

f : x 2 2 4,   1x x x      and    g : x   1
ln 2 1 ,   

2
x x  . 

 (i) Find an expression for  1f x and state the domain of 1f .

 
[3] 

(ii) Sketch the graphs for  fy x and  1fy x
 
on the same diagram. What can 

you say about the solution of the equation  1f ( ) = f ( )?x x  State your reason 

clearly. [3] 

(iii) Determine if the composite function gf exists. If so, find gf(x) and the exact 

range of gf.  [5] 
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11 (a) Given that 2 d
e

d
x y

z
x

 , express 
d

d

z

x
 in terms of x, 

d

d

y

x
 and 

2

2

d

d

y

x
.  

Hence show that the differential equation 
2

1 4
2

d d
2 e

d d
xy y

x x
  can be reduced to

   1 2d
e

d
xz

x
 . 

Solve this differential equation, expressing y in terms of x. [5] 
 

(b)   An aviary keeper started an insect breeding programme with an initial number 

of 5000 insects in a controlled environment to feed the birds in the aviary. The 

rate of birth of the insects is 
1
25

 of the number I (in thousands) of insects, at 

time t days after the start of the breeding programme. The insects are also being 

fed to the birds at a constant rate of 0.25 (in thousands) per day. Show that the 

population of insects can be modelled with the differential equation  

      

d
0.04( 6.25).

d
I

I
t
 

 

 

 Hence solve the differential equation to obtain the particular solution of I in 

terms of t.  [4] 

  By sketching the solution curve, show that it is possible for the insect breeding 

programme to be depleted of insects after some time. After how many complete 

days will this happen?  [2] 
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12 (a) A Dunman High alumnus plans to donate money to build two koi ponds in the 

middle of Zheng Xin Yuan. The ponds are in the shape of “D” and “H” as 

shown below (all dimensions are in metres and the diagrams are not drawn to 

scale). 

  

 

 
 
 
 
 
 
 
 
 
 

 The shaded areas represent the pond surface. The “D” pond is made up of a 3h 

by h rectangle and a curved area formed from two concentric semi-circles of 

radii 2r and r respectively. The “H” pond is made up of seven identical squares 

of side h. 

 

(i) Show that the total surface area of the two ponds, A m2, is given by 

2 23
10 .

2
A h r   [2] 

(ii) The landscape designer proposes that h and r be related by the equation 

2rh k , where k is a constant. As r and h vary, find the exact value of 
r

h

at the stationary value of A. Determine the nature of this stationary point 

and use a calculator to evaluate the stationary value of A if 1.k    [6] 

 

(b) The equation of a graph C is given by 
4

2 5 .y x
x

    

By differentiation, find the exact set of values of y for which there are no points 

on C. [4] 
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