2024 JC2 Prelim Exam H2 Physics Paper 3 Solution

1	(a)	(i)	Because the speed at B is the same at C, the gain in KE is due to the loss of GPE	
			from A to B only.	
			Gain in KE in the end = Loss in GPE from A to B	
			$\frac{1}{2}mv^2 = mgh$	
			$v = \sqrt{2gh} = \sqrt{2(9.81)(2.5)}$	C1
			= 7.0 m s ⁻¹	A1
		(ii)	From A to B, the gravitational potential energy drop is converted to kinetic energy	B1
			of the child.	
			From B to C, the further loss in gravitational potential energy is not converted	B1
			into kinetic energy but dissipated as work done against contact friction (or	
		<i>/</i> ····	thermal energy and sound). Thus, the child's speed is unchanged.	
		(111)	Work done against friction = Fs	
			Fs = loss of KE from C to D	
			$= KE_c - KE_D$	
			$F(7.6) = \frac{1}{2}(54)(7.0)^2 - 0$	M1
			F = 168 N (3 sf)	A1
			OR	
			$v^2 = u^2 + 2a_{ave}s$	
			$0 = 7.0^2 + 2a_{ave}(7.6)$	(M1)
			average accel., $a_{ave} = -3.22 \text{ m s}^{-2}$	
			Average frictional force = $ma_{ave} = (52)(3.22)$	
			= 168 N	(A1)
	(b)	(i)	When the carousel rotates, the chair and its occupant will travel in a straight-line if	
			not for the cable attached to it. <u>A horizontal (centripetal) force is required</u> in order	M1
			to pull the man towards the centre.	
			This is provided by the <u>horizontal components of the tension</u> on the cable holding	A1
			the chair. Thus, the cable has to tilt to provide for the needed centripetal force.	
		(ii)		
			tension	
			2m	
			l v	
			weight	
			All ferrors must be indicated and labelled in words (act in latters on symptots)	B1
1			All forces must be indicated and labelled in words (not in letters or symbols).	_
			Deduct mark if ERD includes contrinctal or contributed force, normal force or any	
1			irrelevant forces	
1	1		Indevant lotes.	1

		2	
	(iii)	Along the y-direction: $T \cos \theta = mg$ (balanced)	
		Along the x-direction: $T\sin\theta = mr\omega^2$ (unbalanced due to centripetal rotation)	
		$r = 4.7 + 8.4 \sin 35^\circ = 9.518$ m	C1
		$\tan\theta = \frac{mr\omega^2}{mg} = \frac{r\omega^2}{g}$	
		$\tan 35^{\circ} = \frac{(9.518)\omega^2}{9.81}$	C1
		$\omega = 0.85 \text{ rad s}^{-1}$	A1

2	(a)		The first law of thermodynamics states that the increase in internal energy of a	B1
			system is the sum of the heat (thermal energy) supplied to the system and the work	
			done on the system.	
	(b)	(i)	1. $W_{on} = -P\Delta V$	
			$= -(2.79 \times 10^5) [(1125 - 950) \times 10^{-6}]$	C1
			= -48.825 = -48.8 J (3sf)	A1
			Max 1m for positive answers.	
			$\Delta U = Q_{in} + W_{on}$	
			$W_{on} = 0$, since no volume change for $Q \rightarrow R$	C1
			$Q_{in} = \Delta U = \Delta \left(\frac{3}{2} \rho V\right)$	
			$= \frac{3}{2} \Big[\Big(2.10 \times 10^5 \Big) \Big(1125 \times 10^{-6} \Big) - \Big(2.79 \times 10^5 \Big) \Big(1125 \times 10^{-6} \Big) \Big] $	C1
			= -116.44	
			$Q_{loss} = -Q_{in} = 116 \text{ J} (3\text{sf})$	A1
			Max 2m for negative answers, but do not penalize if same type of mistake in 1 .	
		(ii)	Since there is no heat loss/gained, and there is (positive) work done on the gas	
			through the compression (decrease in volume), the internal energy will increase.	M1
			Hence, the temperature will increase.	A1

	3	
(iii)	At point P: pV = nRT	
	$(2.79 \times 10^5)(950 \times 10^{-6}) = n(8.31)(350)$	B1
	n = 0.09113 = 0.091 mol (2 sf)	
	OR	
	At point Q:	
	pV = nRT	
	$(2.79 \times 10^5)(1125 \times 10^{-6}) = n(8.31)(414)$	(B1)
	$n = 0.09124 = 0.091 \mathrm{mol} (2 \mathrm{sf})$	
	$Q = nC(\Delta T)$	
	= 0.091(20.8)(414 - 350)	C1
	=121 J (3sf)	A1
	OR	
	$\Delta U = \frac{3}{2} nR\Delta T = W_{on} + Q_{in}$	
	$\frac{3}{2}(0.091)(8.31)(414 - 350) = -48.8 + Q_{in}$	(C1)
	$Q_{in} = 121 J (3sf)$	(A1)

3	(a)	The graph shows a linear line passing through the origin. This shows that	B1
		acceleration is proportional to displacement.	
		The graph shows a negative gradient. This means that acceleration and	B1
		displacement is always in opposite direction.	
	(b)	$a = -\omega^2 X$	
		Hence, using one of the data point $(-0.04, 0.32)$,	
		$0.32 = -\omega^2(-0.04)$	C1
		$\omega^2 = 8.0$	
		$\omega = \sqrt{\frac{k}{L}} \Longrightarrow k = \omega^2 L$	
		k = (8.0)(1.24)	C1
		$= 9.92 \text{ m s}^{-2}$	A1
	(C)	Increasing the length decreases the angular frequency.	M1
		Since total energy of oscillation = $\frac{1}{2}m\omega^2 x_0^2$, and total energy does not change, the	
		amplitude is inversely proportional to angular frequency ² . increasing the length will	A1
		increase the amplitude of oscillation.	

4	(a)	Coulomb's law states that the magnitude of the electric force between two point	B1
		charges is directly proportional to the product of the magnitude of the charges and	
		inversely proportional to the square of their separation.	

	<i>((((((((((</i>		4	
	(b)	(i)	Electric force, $F_{\rm E} = \frac{96 \times 10^{-9} \times Q_{\rm Y}}{10^{-9} \times Q_{\rm Y}}$	M1
			$4 \times \pi \times 8.85 \times 10^{-12} \times 0.080^{2}$	
			angle to the vertical, $\theta = \sin^{-1} \left(\frac{0.080}{1.2} \right) (= 3.823^{\circ})$	
			$F_{-} = mq \tan \theta$ Weight	
			$-(0.013)(9.81)\tan(3.823^\circ)$	М1
			OR = $(0.013)(9.81) \left[\frac{0.080}{\sqrt{1.2^2 - 0.080^2}} \right]$	
			[v1.2 - 0.080]	
			96 × 10 ⁻⁹ × 0	
			$\frac{360 \times 10^{\circ} \times 60^{\circ}}{4 \times \pi \times 8.85 \times 10^{-12} \times 0.080^{\circ}} = (0.013)(9.81) \tan(3.823^{\circ})$	
			$Q_{\rm Y} = 63 \text{ nC} \text{ (shown)}$	A0
		(ii)	, 96×10 ⁻⁹ 63×10 ⁻⁹	C1
			$\varphi_{net} = \frac{1}{4 \times \pi \times 8.85 \times 10^{-12} \times 0.040} + \frac{1}{4 \times \pi \times 8.85 \times 10^{-12} \times 0.040}$	
			= 21580 + 14162	A 1
		(1)	$= 3.57 \times 10^4 \text{ V}$	
	(C)	(1)	$E = \frac{V}{r} = \frac{250}{0.018} (= 1.389 \times 10^4 \text{ V m}^{-1})$	IVI 1
			$a = 0.018$ $(1.6 \times 10^{-19})(1.389 \times 10^4)$	
			$a = \frac{F}{m} = \frac{qE}{m} = \frac{(1.0 \times 10^{-9})(1.000 \times 10^{-9})}{(0.11 \times 10^{-31})}$	M1
				• •
			$= 2.4 \times 10^{15} \text{ m s}^{-2} (2 \text{ st})$	AU
		(ii)	time taken to travel through the parallel plates = length/ speed	C1
			$=\frac{20 \text{ cm}}{2.0 \times 10^7} (=1.0 \times 10^{-8} \text{ s})$	UT
			2.0 × 10	
			final vertical around the state of F	
			$\lim_{x \to \infty} vertical speed = u_y + u_y t = 0 + \frac{-1}{m}$	C1
			$=$ $(2.4 \times 10^{15})(1.0 \times 10^{-8})$	UT
			$(=2.4 \times 10^7 \text{ m s}^{-1})$	
			speed = $\sqrt{(2.0 \times 10^7)^2 + (2.4 \times 10^7)^2}$	
			speed = $\sqrt{(2.0 \times 10^{7})^{1} + (2.4 \times 10^{7})^{1}}$	A1
		(111)	$= 3.1 \times 10^{\circ} \text{ m s}^{-1}$	D4
		(111)	to that of the electron. Hence, the proton will be deflected down instead of up	DI
			The mass of the proton is heavier than that of the electron, so the acceleration is	B1
			lower. Hence, the deflection will be less than that of the electron.	

5	(a)	(i)	Resistance is infinite / very high		B1	
		(ii)	Resistance decreases as V increases (Ratio of V/I increases)		B1	
	(b)	(i)	$R = \rho L/A$			
			$\rho = (18 \times \pi (0.15 \times 10^{-3})^2 / 0.94)$			
			$= 1.4 \times 10^{-6} \Omega m$		B1	

	(ii)	p.d. across wire = $\frac{18}{18 + 2.0}$ (6.2) = 5.58 V	C1
		Since S is at the mid-point, pd across half the length of the wire = $\frac{1}{2}$ (5.58)	A1
	(iii)	Current in the battery: increase	B1
		Voltmeter reading: decrease	B1
(C)	(i)	l = Anvq	
		$q = 0.93/[(\pi (0.15 \times 10^{-3})^2) \times (9.0 \times 10^{28}) \times (1.3 \times 10^{-3})]$	
		$= 1.1 \times 10^{-19} \text{ C}$	A1
	(ii)	The charge carriers in a metal wire are the electrons which has a charge of	B1
		1.6×10^{-19} C. Charge q is less than 1.6×10^{-19} C the elementary charge. So the	
		value must be wrong	

6	(a)	(i)	Since the <u>velocity is always right angle to the magnetic field</u> , by Fleming's left hand rule, <u>the magnetic force always be right angle to its velocity.</u> The force <u>only changes the direction of the motion and not its speed.</u> This results in circular motion.	B1 B1
		(ii)	Out of page	B1
		(iii)	The magnetic force provides the centripetal force $Bqv = \frac{mv^2}{r}$ $B = \frac{mv}{qr} = \frac{(20 \times 1.66 \times 10^{-27})(5.6 \times 10^5)}{(1.6 \times 10^{-19})(0.051)}$ $B = 2.3 \text{ T}$	B1 C1 A1
	(b)	(i)	Upwards	B1
		(ii)	qE = Bqv $E = Bv = (2.3)(5.6 \times 10^5)$ $= 1.3 \times 10^6 \text{ V m}^{-1}$	C1 A1

7	(a)	(i)	$m_x u_x + m_y u_y = m_x v_x + m_y v_y$	
			50(4.5) + M(-2.8) = 50(-1.8) + M(1.4)	N4 1
			<i>M</i> = 75 g	A1
		(ii)	Total kinetic energy of the system before and after collision is the same.	B1

		6	
	(iii)	Using KE:	
		$\left \frac{1}{2}m_{x}u_{x}^{2} + \frac{1}{2}m_{x}u_{x}^{2} = \frac{1}{2}\left[0.050(4.5)^{2} + 0.075(-2.8)^{2}\right] = 0.80 \text{ J}$	МО
		$\left \frac{1}{2}m_{x}v_{x}^{2} + \frac{1}{2}m_{x}v_{x}^{2} = \frac{1}{2}\left[0.050(-1.8)^{2} + 0.075(1.4)^{2}\right] = 0.15 \text{ J}$	M1
		Since final KE < initial KE, inelastic collision	A1
		OR Using relative speed	
		$u_x - u_y = 4.5 - (-2.8) = 7.3 \text{ m s}^{-1}$	(M0)
		$v_{Y} - v_{X} = 1.4 - (-1.8) = 3.2 \text{ m s}^{-1}$	(M1)
		Since relative speeds are not the same, inelastic collision	(A1)
	(iv)	Since <u>total initial momentum is not zero</u> ,	B1
		having both objects concurrently at rest means that instantaneous total	B1
		Hence, not possible due to conservation of linear momentum	
(b)	(i)	8.0	B1
		x/cm 0 0 F _{MAX} F	
	(ii)	$\Delta K E = \Delta E P E$	
		$\frac{1}{2}mv^2 = \frac{1}{2}F_{MAX}x$	
		$\left \frac{1}{2}(0.50)(0.25)^2 = \frac{1}{2}F_{MAX}(0.080)\right $	M1
		$F_{MAX} = 0.39 \text{ N}$	A1
	(iii)		B1
		x/cm ^{8.0} 0 0 <i>F</i> _{MAX} <i>F</i>	B1
		B1: Line should be less steep	
(c)	(:)	B1: Line should extend further rightward than original	
(C)	(1)	25% full:	
		$\Delta W = 0.75(2 \times 50)(1030)(9.81)$	M1
		$\Delta W = 757822.5 = 7.6 \times 10^5 \text{ N}$	A0

		7	
	(ii)	New mass of submarine	
		$m = 2.2 \times 10^6 + \frac{757822.5}{9.81} = 2277250 \text{ kg}$	
		$a = \frac{\Delta W}{m} = \frac{757822.5}{2277250}$	M1
		$a = 0.33 \text{ m s}^{-2}$	A1
	(iii)	When the submarine descends at an angle, the surface area that is considered	M1
		for drag is smaller.	
		Hence the downward component of velocity of the submarine is higher when it is	A1
		descending at an angle.	
	(iv)	The water molecules gain an upward momentum after impact with the angled	M1
		dive plane.	
		Hence by <u>N2L</u> , an <u>upward force is exerted on the water molecules</u> due to the dive	A1
		plane.	
		By <u>N3L</u> , a downward force is exerted on the dive plane by the water molecules,	B1
		resulting in the submarine being pushed downwards	

8	(a)		Binding energy = [Total mass of the unbounded nucleons - mass of Iron nucleus] c^2 BE = $\left[(26 \times 1.00728 + 30 \times 1.00866) - 55.92132 \right] uc^2$	B1 M1
			$= (0.52776) (1.66 \times 10^{-27}) (3 \times 10^{8})^{2}$	
			$=7.88 \times 10^{-11} \text{ J}$	
			BE per nucleon = $\frac{7.88 \times 10^{-11}}{56}$ = 1.4×10 ⁻¹² J = $\frac{1.4 \times 10^{-12}}{1.6 \times 10^{-19}}$ eV	M1 A0
	(b)	(i)	= 8.8 MeV	B1
		(ii)1.	Neutron	B1
		(ii)2.	Since the nucleus are of nucleon numbers less that Fe-56, base on the graph, the binding energy per nucleon increases with higher nucleon number. The energy used to break the hydrogen isotopes are thus less than the energy released use to form belium nucleus.	B1
				DI

		8	
	(iii)	Energy released = BE of products – BE of reactants	
		= (mass defect of products - mass defect of reactants)c ²	
		$= (0.030377 - 0.002388 - 0.009105)uc^{2}$	C1
		$= 2.8 \times 10^{-12} \text{ J}$	A1
(C)		If there is no other particle, beta particle would always have the same energy.	B1
		By conservation of energy and momentum,	M1
		there must be another particle to share energy/momentum	A1
(d)	(i)	Comparing the interval between N = 12 x 10^{12} and N = 12 x 10^{12} , Δt = 0.52 s	
		Therefore, half-life = 0.52 s	
		$\frac{1}{2} - \frac{\ln 2}{\ln 2} - \frac{\ln 2}{\ln 2}$	M1
		$\frac{1}{t_{\chi}} - \frac{1}{0.52}$	
		$=1.3 \text{ s}^{-1}$	A1
		- 1.0 0	
	(ii)	Check that number of thorium + protactium is always N (marker to check they	B1
	()	intersect at 12 and two more values to add to 24×10^{12})	
		Increasing graph with decreasing gradient	B1
	(iii)	initial activity = (λ) (initial number of nucleons)	
	. ,	$(1, 2)(2, 1, 4, 21^2)(-2, 4, 4, 21^3)$	C1
		$=(1.3)(24 \times 10^{12})(=3.1 \times 10^{13})$	
		Activity at 1.5 s = $3.1 \times 10^{13} e^{-(1.3)(1.5)}$	C1
		$=4.4 \times 10^{12}$ Bg	A1
	(iv)	The Geiger counter was only used to count the radioactive particle that enters the	
	(17)	GM tubo	
		Since the radioactive particle are released in random direction, not all the	B1
		radioactive particle us cantured by the counter	
		radioactive particle us captured by the counter.	