2019 H2 9749 Physics Paper 1

1	From Measurement notes:					
	Pr	efix	Multiple	Symbol		
	fei	mto	10 ⁻¹⁵	f		
	p	ico	10 ⁻¹²	р		
	na	ano	10 ⁻⁹	n		
	mi	icro	10 ⁻⁶	μ		
	n	nilli	10 ⁻³	m		
	CE	enti	10 ⁻²	С		
	d	eci	10 ⁻¹	d		
	k	ilo	10 ³	k		
	m	ega	10 ⁶	М		
	gi	iga	10 ⁹	G		
	te	era	10 ¹²	Т		
2	$\pm 1\% = -1$ with an	$\frac{1}{100} \times 4.$ additio	072 = 0.0407 nal uncertain	′2 ty of ±10 m\	/=0.010 V	[D]
	Total uncertainty = $0.04072 + 0.010 = 0.05$ [1 s.f. for absolute uncertainty] Reading = (4.07 ± 0.05) V [reading must be same d.p. as absolute uncertainty]					
3	Taking	downw	ards as posit	ive.		[D]
	s is the	total di	stance to the	ground and	<i>u</i> = 0	
	$s = \frac{1}{2}at^{2} = \frac{1}{2}(9.81)t^{2} = 4.905t^{2} (1)$					
	$0.25s = \frac{1}{2}a(t-1.00)^2 = 4.905(t-1.00)^2 (2)$					
	sub (1) into (2): $0.25(4.905t^2) = 4.905(t - 1.00)^2$ $\sqrt{0.25(4.905t^2)} = \sqrt{4.905(t - 1.00)^2}$ $\sqrt{0.25}(t) = t - 1.00$ 0.50t = t - 1.00 t = 2.00 s					

4	Speed = gradient of $s - t$ graph \rightarrow increases F_{drag}	[C]
	$F_{\text{net}} = ma$	
	As speed increases, <i>F</i> _{drag} also increases.	
	From above equation, acceleration decreases.	
	ing	
5	As the total momentum of the system is zero before the explosion, the centre of	[A]
•	gravity cannot move.	6.7
	If it does, this would meant that an external force must have been applied to the	
	system which is not the case in this question.	
6	By conservation of momentum, $mu = mv + 2(mv)$	[B]
	mu = 3mv	
	u = 3v	
	1	
	$KE_{initial} = \frac{1}{2}mu^2$	
	$KE_{final} = \frac{1}{2}mv^2 + \frac{1}{2}m(2v)^2 = 2.5mv^2$	
	$KE_{max} - KE_{max} = 0.5mu^2 - 2.5mv^2 = 0.5m(3v)^2 - 2.5mv^2 = 2mv^2 = 4$	
	$\frac{1}{KE_{\text{initial}}} = \frac{1}{0.5mu^2} = \frac{1}{0.5mu^2} = \frac{1}{0.5m(3v)^2} = \frac{1}{4.5mv^2} = \frac{1}{9}$	
7	EPE = area under F - x graph	[A]
	$-\frac{1}{(20\times10^{-3})(28)}$	
	$=\frac{1}{2}(20\times10^{-1})(20)$	
	= 0.28 J	
8		וחז
U	F	
	, ∀ mg	
	$F - mg \sin \theta = ma$	
	$mg - mg \sin \theta = ma$	
	$g(1-\sin\theta) = a = \frac{dV}{dt}$	
	at	
	As the object moves from X to Y, the angle θ increases, hence sin θ will	
	increase and $(1 - \sin \theta)$ will decrease and thus acceleration (the rate of change	
	of velocity) will decrease.	
1		1

9	$P = \Delta E = mg\Delta h$	[D]
	$=\frac{1.3\times10^9(9.81)(2.0)}{1000}$	
	24×60×60	
	= 295208 W	
	= 300 KVV	
10	$\omega = \frac{v}{r}$, v is constant	[B]
	$\Rightarrow \omega \propto \frac{1}{r}$	
11	Centripetal acceleration a = 20 g = $r \omega^2$ where r is measured from the centre of	[D]
	the circle	
	$\Rightarrow \omega = \sqrt{(20 \times 9.81 / 7.0)} = 5.3 \text{ rad s}^{-1}$	
12	Escape speed is the minimum speed that a mass m must be launched vertically from the surface of the planet of mass M if it is to reach an infinite distance away from that planet. By Conservation of Energy	[A]
	total energy (KE+GPE) at surface = total energy (KE+GPE) at infinity. $\frac{1}{2}mv^{2} + \left(-\frac{GMm}{R}\right) = 0 + \left(-\frac{GMm}{\infty}\right)$ $\frac{1}{2}v^{2} = \frac{GM}{R}$ $v = \sqrt{\frac{2GM}{R}}$	
13	$pV = \frac{1}{3} Nm \langle c^2 \rangle = nRT$	[C]
	\Rightarrow Root mean square speed $c_{rms} = \sqrt{(3 \times nRT / Nm)}$	
	where $[I] = K$ and $[Nm] = kg$	
	$= \sqrt{(3 \times 1 \times 8.31 \times (273+30) / 0.0040)}$ = 1374 \approx 1400 ms ⁻¹	
14	Internal energy of a system is the sum of a random distribution of <u>kinetic and</u>	[C]
	potential energies associated with the <u>molecules</u> of the system. \rightarrow Internal energy = $N(E_1 + E_2)$	
	\rightarrow internal energy – $N(E_k + E_p)$	
15	First Law of Thermodynamics: $\Delta U = Q + W$	[B]
	$\Delta U = $ <u>increase</u> in internal energy of the system	
	Q = heat supplied to the system	
	W = work done <u>on</u> the system	
	Heat supplied to system $Q = \Delta U - W$ \rightarrow Heat transforred from (by) the gap to the surroundings = $Q = M(-\Delta U)$	
	\rightarrow near transience from (by) the gas to the surroundings – $-Q = W = \Delta U$	

16		[B]
16	Displacement x = 0 (i.e. equilibrium position), a = 0, v = maximum, E _k = maximum	[B]
	= maximum	
17	At t = 0, resultant is maximum \Rightarrow in phase and constructive interference If resultant is zero \Rightarrow 180° out of phase (i.e. path or time difference of 0.5λ or 0.57) and destructive interference First time t when both waves become 180° out of phase will be when the 480 Hz wave made 120 oscillations and the 482 Hz wave made 120.5 oscillations and this is when t = 0.25 s. The next time will be t = 0.75 s where 360 oscillations and 360.5 oscillations are made respectively. Subsequent times will be 1.25 s and 1.75 s.	[B]
18	Stationary wave formed when emitted microwaves superpose with reflected microwaves (by the metal sheet). Maximum detected voltage indicates the antinode and minimum detected voltage indicates the node in the stationary wave. Wavelength = 2 x distance between two adjacent nodes/antinodes = 2 x 60 mm = 120 mm	[C]
19	$d\sin\theta = n\lambda$ d = line spacing (i.e. slit separation) of the diffraction grating n = order of diffraction, an integer $\theta = \text{ angle between the } n^{\text{th}} \text{ order beam and the normal to the grating}$ $\lambda = \text{ wavelength of the incident beam} = c / f$ $(4.0 \times 10^5)^{-1} \sin \theta = 3 (3.0 \times 10^8 / 6.0 \times 10^{14})$ $\theta = 36.9^{\circ}$ $2\theta = 73.7^{\circ}$	[D]
20	$\sin \theta = \frac{\lambda}{b}$ Decrease in $\sin \theta \Rightarrow$ decrease in $\theta \Rightarrow$ wavelength λ must decrease and gap size b must increase.	[C]

21	uniform electric field \Rightarrow constant force \Rightarrow constant acceleration so graph B	В
22	$E = V/d \Rightarrow p.d. = Ed \Rightarrow p.d. \propto d \text{ so } p.d. = 2/10 \times 1000 = 200 \text{ V}$	В
23	before 2V, $I \propto V$ (just 4 Ω as diode no current), after 2V just add fixed current	С
24	when rheostat = 0, V = $1/(1+0) \times 12 = 12$ V	D
	when rheostat = 1, V = $1/(1+0.5) \times 12 = 8$ V	
25	$V = NA\Delta B/\Delta t = (1)(2.0 \times 10^{-2})(10.0 \times 10^{-3})/4.0 = 5.0 \times 10^{-5} V$	В
26	at first field at O points opposite to field at P and Q	С
	without loss of generality, suppose field at O is out of, at P and Q is into	
	with current Y, field at O decreases that means current in Y is opposite to X	
	so current in Y produces field into at O and P, and out of at Q	
	thus at P both field point into, increase; at Q, fields opposite so decrease	
27	$N_S/N_P = V_S/V_P = I_P/I_S$ so if N_S/N_P is doubled, V_S/V_P is doubled and I_S/I_P halved	В
28	more max speed means more KE converted to single X-ray photon at one go,	С
	single X-ray photon more energy means shorter wavelength	
29	both Δp and Δx cannot be zero at the same time, so answer B	В
30	A = λ N, λ is the constant of proportionality between A and N	Α