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Task: Secret Code Message

Suppose Adam wants 1o send the following secret message to Bob,

He uses the followi
follows:

A

MEET TOMORROW

. ; : “eition in the alphabet as
ng encoding system with each letter assigned its position In E P

1

B X Y

Z

2 24 25

26

Thus, the original message is encoded as:

To encrypt the original me
them as vectors as follows:

13 5520201513 15 18 18 15 23

13) (20 (13) (18

Then he performs the following matrix multiplication:

He gets

S 20|, 15(,15].
15 18) \ 23
X 12 3)x
Alyl=|l1 1 2 y
z 01 21z
38 105 97 117
- . L ; o and | /7 respectively.
15 50 5 61

Thus the encrypted message code is

38 28 15 105 70 50 97 64 51 117 79 61

When Bob received the encrypted message, he needs to decode it.

Questions:

*  What must Bob know in order to decode the message?
* Could Adam use any matrix other than A? What properties must A have?

ssage, he first breaks up the message into blocks of three and writes

Eve intercepts the encrypted message. What must she know in order to break the code?
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1 Matrices

An mxn (read as m by n) matrix
(horizontal) and » columns (vertical).

Let A be an mxn matrix. Then, an
denoted by ay, which could be a real or complex number:

a, aj a,

a a a
21 22 2n

A= 2 y
aml amZ anm

A shorthand way of writing the above matrix is (a,.)

mxn

For the current syllabus, we deal with real values of a;’s only.

For example,

3 0 -16
(a) -2 4 0 1]isa3x4 matrix.
& L+F.5

The (1,4)-entryis G and the (3,2)-entry is '

®) (-1 0 3 10 -5)isa 1xS matrix.

1
2. :
(c) 0 1S a4 x 1 matrix.
0
12.
(d) (ag.)3 ,» Where a; =(=1)"/(i - j), is a 3x3 matrix. 13
|
This matrix can also be written as 0 ® &
- @ \|
9 . | ©

A matrix with only one row is called 2 row matrix ((b) above).

A matrix with only one column is called a column matrix ( (c) above).

is a rectangular array of numbers, consisting of m rows

entry is a general element found in the ith row and jth column,

“1( |+
21 -l(

3
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L1 Special Matrices

1) An nxn matrix js called a square matrix of order n. In a square matrix (a,-j )nm , the
entries air, a, ... Qnn, are called diagonal entries,
2 0). :
For example, (_.] SJ 5 @ square matrix of order 2, with the elements 2 and 5 being the
diagonal entries.
2) A diagonal matrix of order # is a square matrix such that all its non-diagonal entries are
zero. That is, a, =0 whenever ; = 7.
) 1 00
For example, (0 SJ and [0 0 0|area diagonal matrices,
0 0 1
3) The identity matrix or unjt matrix of order », denoted by I, is an nxn square matrix
(@if)nxn, where
l, ifi=j;
Cl,j = l J /5
0, ifi=;.
That is,
(1 0 0o 0
0 1 o0 :
0 0 1 "~ 3|
: = D
0 0 1
I 00
Forexample,I, =[ 0 1 0 is the identity matrix of order 3.
0 01
When the order of the 1dentity matrix is understood, we denote the identity matrix by 1
instead.
4) A matrix with all entries zero is called a zero matrix or null n;atrix, and is denoted by 0.
0 00
For example, | 0 0 0 | is the zero matrix of order 3.
0 0 0

Chapter 13A: Matrix Theory
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1.2 Basic Matrix Operations
1) The matrix addition of two nmxn matrices A = (ay. )m" and B = (b;,j ),.m. is given by
(ay.+by.)mm:
3y By w O, by By = B a, +b, a;2+b,2 . a,+b,
A+Bo| % 2 - @ " by by .. b, _ ay+b,  a,+b, .. a,, +b,
By Dy e W gy Bt e B oty a.4b, & a,,+b,
L 2 3 (27374 3 5 3F
Forexample, (4 5 6|+|5 6 7(=|F 1 13 ,
78 9) (8 9 10 L
2 4 0 -1 x5
6 -8|+[-3 4|=|3 -
-1 4) (8 9 + 3
NOTE:

(a) Two matrices may be added if they share the same number of rows and columns.
So, the following matrix addition is not valid:

L 2 3
I 3
4 5 6|+
55
7 8 9
(b)  The addition of matrices is commutative. That is,

A+B=B+A.
(c)  The addition of matrices is associative. That is,

(A+B)+C=A+(B+C).
@ A+0=A=0+A.

2) Leta € R. The scalar multiplication of « to an mx»n matrix A = (a,.j) is given by

("ay)m,”‘

a, 4ap - 4a, ca, aa, - oa,
ay 4n 4y, aay 0azy - 0a,,
cA=a|l . ;o w )50 b8 4 ; .
aml am2 amn aaml aaml aamn
. le. 3 1 3 3 9
or example, 3| _ =|._ .
A8 T L1 &

Chapter 13A: Matrix Theory
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. ing the matrix
We shall denote (=DA by -A. So, the matrix subtraction can.bc deﬁngc:) uil[?fmatrix
addition: Given two matrices A and B of the same size, A-B is defined by

A+ (-B).
\
1 2 3721 2 | 33y A a4 = -:‘?'
456—213:456_{.—}_-'_3 = 4 4
789)1405s)|7 89 ¥ B 3 8

NOTE
Scalar multiplication of matrix is distributive:
@) A(A+B)=1A+1B, where AeR.

(ii) (/1+,u)A=AA+,uA,where AuekR.

3) Let A=(a,.j )m‘D and B=(b )

jj pxn

plication of these two matrices, denoted by AB is defined by
P

[z a,kbk].) » that is, the (i, J)th-entry in the matrix AB is
k=1

mxn

The matrix multi

P
Z afkbig = a“bU + a:zsz + ansz R alpbpj :

x~
"

|a“ a;, by, b, b,
AB = |9 9 byl by, b,,
a, a,, Op) bpz bpn

1p~p2

la,8, +a,,b, +.+a b ap, Fagbytotab, .. apb, tapby, tota b,

a, b, +@uby; +...+a'2pbpl ay b, +ay,b,, teta b, ab, +ay,b,, tota b
a,b, +a,,b, +"'+ampbp| s +a,,b, +...+ampbp2 a,.b, +a,,b,, +...+ampbpn
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For example,
() 1 20 1 i 0-2 1+4 -2 5
3 1)1 2} L0-1 342) {-1 5
j (ii) I 2 -1yl 0
| 0 1 o0f0 2
2 -1 13 0

(Ix1+2x0+(~1)x3 1x0+2x2+(=1)x0
=l Oxl+1x0+0x3 0x0+1%x2+0x0
2x1+(=1)x0+1x3 2x0+(=1)x2+1x0

=7 4
=0 2
§ =3
12 3Y1 1 0 38 3
(iii) 45601 20=193 ¢
78 9)lo 1 1 532 ¢ v
4
@) (12 3)|s|= (4+18) _ (32) v
6
4 & @ 4 8 (>
v) 51 2 3)= t &s o 13)
6 (v 18
!
(vi) L 3= IMp ogel Ly
\0 3 5
NOTE

(a) Multiplication of matrices is NOT commutative. That is, in general, AB # BA.
(b) Multiplication of matrices is associative. That is, (AB)C = A(BC).
(¢) The operation of multiplication of matrices is distributive over addition. That is,

A(B+C)=AB+AC;
(A+B)C=AC+BC
(d) If & is a scalar, then a(AB)=(aA)B = A(aB).
(€ A0=0; 0A =0
@ Al=A; JA=A

Chapter 13A: Matrix Theory
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4) The transpose of 4 matrix A =(a--

I ) mx

rows and columns of A Thatis, AT = (a,-,-)

naxm

a, a, a, %

a, a a a
A= 9 2n - AT 1

am] am" anm a'"

Note that if A s an Mxn matrix, then AT is an #xm matrix.

L 3.5 .
For example, if A = tl T=
(2 4 6]’ hen A 3 41
56

NOTE

) denoted by AT, is obtained by interchanging the

aZl aml
azz amZ
a,, - A

If A and B are two matrices such that the below operations are well-defined, and k is a real

constant, then

@ (A7) =A

() (A+B) =AT4pT
(© (kA) =AT

(d (AB)' =BTAT {

Chapter I3A: Matrix Theory
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2 Determinant of a square matrix

p
ay  q

I A is a 2x2 matrix, say A = 2 ] » then determinant of A is det (A) = aj\ay; —aya,.

a1 axp

ay ap  apj

If' A is a 3x3 matrix, say A =

@) Gy a; |, then determinant of A is

az 4y ass

det (A) = \Antls; +0,,05,05) +a30,,a5, — 05,00, —a,a,.a,, — a3y Gy,

Note that determinants of 4x4 matrices and above are NOT in the current syllabus.

Remarks:
1) The second formula for computing the determinant of a 3x3 matrix can be obtained by
recopying the first and second columns of A as shown below:

Y5 A S
. ‘T!B’Jallr’?lf

23 [ @y an
a3\ "asy - Gy3/az dy
ey = A

I[\)
‘

VB

a agy’

The determinant is then computed by summing the products on the downward arrows and
subtracting the products on the upward arrows,

Note that this method DOES NOT WORK for 4x4 matrices and above.

2) The determinant of a Square matrix is also denoted as |A|,

o . q A g
1.e.1fA-—[_l J,thendet(A)ﬂAl—'_l AR =
Example 1
(2 4
(a) GivenA = ; 6},ﬁnddet(A). = fe=Sfpm =5 o
4 2 I 4
. % 2 (,1 o -1]-a o =-% -3-(—\-)4):46-!-’15:9
(b) Given B=|-2 0 -1|,finddet(B). \, | 3| 2 | 3
2 1 3 ' I3

Solution:

Chapter 13A: Matrix Theory
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2.1 Minor and Cofactor of 4 Matrix M \\
IfA = (au') 1S an nxn matrix, i.e. a square matrix, then the minor of the entry ai, denoted by A

is defined to be the determin

g . i mn are
‘ ant of the submatrix that remains after the ith row and jth colu
| deleted from A.

| The cofactor of the entry aj, denoted by Cy, is defined to be (-D™ M;.

31 -4
For example, if A=| 2 5 6 |, then
1 4 8

: , 56
the minor of entry ay; is M= L 8|=5><8—-6x4=16, and

the cofactor of a1 is Cy= (-H)"!' My=16.

Similarly, the minor of entry a3 is M3, = ; ‘ =26, and
6

the cofactor of a3 is Cs = (—1)"*2Mz= —26.

A M,, ifi+jiseven;
Notice that Cjand Myj differs only in sign, that is Cj= ={ N; .fl. J.l. d4d
-M,, ifi+/isodd.

if ki
For 2x2 and 3x3 matrices, a quick way to check whether to use the “+’ or ‘—’ sign is to use the fact

. 3 Sl
that the sign relating Cj and Mj on the ith row and jth column of the matrix is ( ] for 2x2

+ - 4+

matrices and | — + —| for 3x3 matrices.
+ - +

For example, Cii= M1, C21= —May, étc

Similarly, for 4x4 rﬁatrices, the sign relation between Cjand Myis |~ ¥ &

411 Hp 23
Consider a general 3x3 matrix A =| a;; a3 a3 |, then
azy 4z dasx
det(A) =a,ap,a,; + Q03 + 30y Ayy = Q305,05 = )0y Oy — 0530,

=ay,(aya;; - ay,ay,) —ay (—a,a;, + a,0a5,) + ay (a, @, — aa,,)

a, a a, a; q; a;
=aq 2 —ay +ay
as; a4y ay 4y Ay, Ay

=a,C, +a,C,, +a;Cy,

Chapter 13A: Matrix Theory
‘ Page 10 of 30
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This method of evaluating the determinant of A is called the cofactor expansion along the first
column of A.

By rearranging the terms in the above equation and taking out appropriate factors, it is possible to
obtain other formulas:

det (A)= q,,C, +ay Gy +a,, G = a M
=a,C, +a,C, +a,,C,

1 =@, My, +ay M, « cofactor expansion along the 1% col
=a,M, —a,M,, +a M, « cofactor expansion along the 1%
4Gy +ay,Cy, +a,,C;, = —a,M, +a,M

= a,Cy +ayCy, +a,,C, = =ay My, +ay,M,, —a,;M,; « cofactor expansion along the 2™ row
@5Ch +ayCos +ay,Cyy = a My —a, M, + a3, M,; «cofactor expansion along the 3™ col
a5Cyy +a,Cyy +ay,Cy, = a, M

. 31 = A5, My, + a; M e-cofactor expansion along the 3% row

row
2 ~ @3, M}, «~cofactor expansion along the 2™ ¢

Notice that in e

ach of the expansions, the entries and cofactors all come from the same row or
column. These

equations are called the cofactor expansions of A.

Note: This is the way of finding determinants for matrices of higher order.

Example 2
3 0
Find the determinant of the matrix A =| =21:24.5 3 , using the cofactor expansion along the
5 4 =2
(i) first column, 3 16

(ii) first row.
Solution i) det(A) = 36(%41) -C2(-2) 5 ( 3) =-12-4 +15= - 1
1) des(h)- 364)-(4-1s) + 0

V]

[

12+l = = v

3 | oy 3 !

5] _‘T 3 ) 2 -4

> 4454
Remark
In Example 2(ii), it is not necessary to compute the third cofactor since it was multiplied
by zero.

In general, the best strategy to evaluate the determinant b

y cofactor expansion is to expand
along a row or column with the most number of zeroes.

Some Useful Results

(a) det() =1

(b) det(0)=0

(c) If A is a nxm matrix, then det(A) = det
matrix A.

(d) If A and B are nxn matrices, then

det(AB) = det(A)det(B) = det(B)det(A) = det(BA),
although AB is not equal to BA in general.

(A"), where AT denotes the transpose of the

Chapter 13A: Matrix Theory
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3 Inverse of a Non-Singular Square Matrix

. : Xn matrix
. S ar lfthere Isann
A square matrix A of size nxn is said to be invertible or non-singul
A~'such that A A-1= -1 A— In.

A~lis called the inverse o
invertible or singular.,

Bt ERY G I Gy G I 0 4
S P O S

If A is an nxn matrix, then A is invertible if and only if det(A) =0,

= R is said to be non-
£A and is unique. If no such matrix exists, then A is sa

Important Result

Ifan nxn matrix A is invertible, then det(A") =

Cli C12 Cl.n
G Gy G,
: : : ' |is called the matrix of cofactors of A_
Cn! CrrZ Cnn
The transpose of this matrix is called the adjoint of A and is denoted by adj(A), that is,
CII Cll Cnl
CIZ CZZ CnZ
adj(A) = : :
2 |
Cln CZn C

Chapter 13A: Matrix Theory
Page 12 of 30
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Example 3
3 27 <1
Find the adjointof A=|1 ¢ 3|
2 -4
Solution:
The cofactors of A are
Cu= |4 Ci= *( Cu= -6
Ca= —4 Ca= 2 Cn= lC
Cai= @\ Ca= -10 Cu= ]C
- [‘)_ B 'IL ')_—4 '1
so that the matrix of cofactors is 4 2 (L,) and the adjoint of A is 5 0
Ao 16 1L 16
/
Theorem 3.1
If A is an invertible square matrix, then A~ = —1—adj(A).
det(A)
3 2 -1
Forexample,ifA=|1 6 3 |, then det(A) = 64.
7 -4
g0 B Fa (14 e
Thus, 2 = adj(A) = ( ¢ 2 o
-] tA f
det(A) é4 g6 (16

Remark

To check whether the inverse matrix that you have found is correct, you can verify by checking
that AA™ =1 orA™'A= I.

3 2 -1
UsingA=|1 6 3 |asanexample, then
| 2 -4 0
3 2 -1\(12 4 12
aa'=Ll1 6 306 2 -10
64

2 4 0){-16 16 16

3x12+2x6+(=1)x(=16) 3x4+2x2+(-1)x16 Ix12+2x(-10)+(-1)x16
=—| IxI2+6x6+3x(-16) 4x1+6x2+3x16 Ix12+6x(-10)+3x16

64
2x12+(-4)x6+0 2x4+(—4)x2+0 2x12+(-4)x(-10)+0
64 0 0 1 00
=10 6 ol=|o 1 o],
64
0 0 64 0 0 1

Chapter 13A: Matrix Theory
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3.2 Properties of Inverse

If A and B are two Square matrices such that the below operations are well-defined, and & is a
NOn-zero constant, then

@ (A")'=aA

® (kA)" = A" U B ‘
(©) (AB)' =Bz~ (A )(A")':

@ (A7) =(a")' . /_I\S“"j‘

<)

Aa'=1
La\A A5\ e kg AN 2T VA
ED AT =y =t

Chapter 13A: Matrix Theory
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4 Elementary Row Operations and Row-Echelon Form

Let A be an m x n matrix.
There are three types of elementary row operations:

(a) Rie R; Swapping Row (i) with Row .
(b) Ri— aR; Multiplying Row(i) with a real scalar & = 0.
(c) Ri— Ri + aR; Multiplying Row(j) by a real scalar & and add it to Row(/).

- B T T 6 28 B e YO - 4

Forexample, |6 5 4| —RB2®e o g 5 3| Remears o, 3
78 9 21 24 27 0 -18 -36
Two matrices are said to be row equivalent if one can be obtained from the other by a series of
1 23 6 5 4 0 -7 -14
clementary row operations. Thus, |6 5 4 01 2 3)and|1 2 3 | are row equivalent.
78 9)1(21 24 27 0 -18 -36

4.1  Elementary Matrices . b o

Consider the following matrix multiplication:

010 an ay  ay Qi Qi Qg !
(1) 1 0 0fa, a, a2y |= oy V. B g [2 < R .
0 01 as 32 Qs Az, 05, ay, L 2
1 0 0\fa, a, a; ;
(ii) 01 0fay, a, ayl|= R3—>3R3
00 30\a, a, ds3
12 0)a, a, a
(iii) 0 1 0ffa, a, . B (= QFQ Ryl o
0 0 Ij\ay a;, a;

An nxn square matrix is called an elementary matrix if it can be obtained from the 5 x
identity matrix by performing a single elementary row operation.

From the above example,

1 00 0. LD

01 0]—|1 0 0

0 0 1 0 0 1

(100 (1 00
01 0f—|0 1 0

0 0 1 0 0 3

(1 0 0 (120
01 0]—|0 1 0

0 1 0 0 1

Chapter 13A: Matrix Theory
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T rys)

£2.9 N
J45a ) . L [g4°
NOTE n+4_\0:6 (k?{,tJ - /f:\,, 5)

2 | )
. - . .- tary matrices.
All elementary matrices are invertible and their inverses are also elementary

Example 4 \
NN, 102 1oy , (102 ‘
g 10] 2 RE—-RQ'-:R, 0 3 g R,oR, > 0 1 4__’;) 01 4
01 4)0c 4 01 4 03 6 012

Write down the elementa

5 i and
Iy matrices that représent each of these lementary row operations,
write down their orresp

onding inverse.

Solution

Properties of Determinant of a Matrix Undergoing Row Operations

It can be shown that

« Iftwo rows (columns) of a matrix are equal, then det(A)=0.

« Ifonerow (column) of a matrix is zero, then det(A)=0.

* Iftwo rows (columns) of a matrix A are interchan

ged, the determinant of the resulting matrix
is —det(A).

If a single row (column) of a matrix A is mul
resulting matrix is kdet(A).

* Ifa scalar multiple of a row (column
then the determinant of the resulting

tiplied by a scalar £, then the determinant of the

) of a matrix A is added to another row
matrix is the same as det(A).

0{e+ (L:_. P\) - cQ@-L (E’) vQE’"'(A)

(column) of A,

Chapter 13A: Matrix Theory
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4.2 Row-Echelon and Reduced Row-Echelon Form

A matrix is said to be a row-echelon matrix (or in row-echelon form) if it satisfies the following
conditions :

(@)  Ifthere are rows that consist entirely of zeros, then they are grouped together at the
bottom of the matrix.

(b) If a row does not consist entirely of zeros, then the first non-zero number in the row is
a"l" (called a leading 1).

(¢)  Inany two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs further to the right than the leading 1 in the higher row.

In addition, if a row-echelon matrix also satisfies the condition below:
(d) Each column that contains a leading 1 has zero everywhere else,
this matrix is said to be in reduced row-echelon form (or a reduced row-echelon matrix).

Note : A reduced row-echelon matrix is already in row-echelon form.
If a matrix is not in row-echelon form, then it is not in reduced row-echelon form.
A Quick Check :
(a) A matrix in row-echelon form must have zeros below each leading 1.
(b) A matrix in reduced row-echelon form must have zeros below and above each leading

1. CD@@\

Example 5
Determine which ofthe following matrices are in ‘@ D
(a) row-echelon form; (b) reduced row-echelon form. .
100 ' 1000
il @ ola] my” 2 B G35 1 ) md® YO0
000, | 0000’ 000 8.0
001 0010
10 3 4
1% 0125/,
F=00223,G=0122
00000 TEE

Solution :

Chapter 13A: Matrix Theory
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 Echelon Form
Procedure for Reducing a Matrix to (Reduced) Row Ech
Steps:

: i f zeros.
1) Locate the leftmost column that does not consist entirely 0 so that the entry at the top of the
2) Interchange the op row with another row, if necessary,
column found in Step 1 is different from zero. ' 1 is o0, multiply the first row
3) If the entry that is now at the top of the column found in Step
by 1/at in order to introduce a leading 1.

ecome 0 the row, w i ding 1
ies below the lea

b suitable multiples of the top row to the rows below so that all entr

me zeros.

5) Cover the top row in the m
submatrix that remains. C
6) Beginning with the |
row to the rows abov
Continue until the entire

4)

atrix and begin again with Step 1 applied to the _echelon form.
ontinue on this way until the entire matrix is in row it Lot
ast non-zero row and working upwards, add suitable multip

¢ to introduce zeros above the leading 1's.

natrix is in reduced row-echelon form.

Example 6
1a-] -2 -8
7
Reduce 3 %8 ] to reduced row echelon form.
1 7 4 7
36 7 16
Solution : )
(A H-Y
P L B OO menes 7LE G B Ry> &Ry [ '%225 R B g
R b) 1
38 B AN i an, le s 3B Bk | eyl | = | 00 00
1 7 4 7 g g | —p " 2 0o
- v Yo o !
36 7 16 0 3 1 1
l [2,5 l?
O %3 qw
“o # 92388  cubolon
W'?k}e

Chapter I3A: Matrix Theory
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We can use GC to help use to do row
reduced row-echelon matrix.

NAMES MATH
1:]q=}
:[B]
i £CJ
: D]
:[E]
[F1]

NOUThAWN

8:[H]
9LLI]

MATRIXLA] 4 x4
. 1
3 9
1 7
3 6

17
1e

~N LN

[AI1,1)= 1

NAMES [EEEN EDIT

8T™Matrrlist(
9:Listhrmatr(
@:cumSum(
A:ref(
B:rref(
C:rowSwapr(
D:row+(
E:%row(

(3 * row+(

*row+(-3,[A]1,1,2)

.....................................................

operations on matrix, and also to find the row-echelon and

Step 1

Press and then go to the EDIT

menu. Press 1 to select entry to matrix A

Step 2

Press 4 (ENTER]| 4 [ETER]] to define a 4x4
matrix. Key in the entries.

Step 3

Press (20d! [0UIT] ¢ return to the home

screen. Press MATRX] and then go to

the MATH menu, and select F for *row+(

to represent “multiplies the row, add to the
second row”.

Step 4

Key in -3, [A],'1, 2, where the entry [A] is
obtained by pressing (ATRY) 3ng goto
the NAMES menu, and select the matrix
[A].

The above entry means multiplies row 1 of
matrix [A] by -3 and then adds it to row 2

Chapter 13A: Matrix Theory
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1L 1 2z o 5
262 2 Step |
1747 To find the rref of the matrix, press
f‘l"ef([ﬂ]) ................ 36716 and go to the MATH menu.
é @ 1.666666667 4.6666666 | SclectB for rref(
a é 3 3333333333 . 3333833.’? Then, press o fhe
9.9 O 0 NAMES menu, and select the matrix [A].
4.2

Given two matrices A and B having the same number of rows, where A= | %2

by, b, by,
and B=| b, 2k
bm! bm’ bm&
by
i 12
a4y ay
a a

Finding Inverse of Matrix using

Elementéry Row Opertions

a, 4a, An
aZZ a7,,
aml amZ . aﬂ?n

a1 b, b, - by
a,,| b, by, - by,
amn bm] bml o b

Given a non-singular nxn matrix A, we can find its inverse by performing elementary row
operations on the matrix [A[T] until the form

matrix. Then B is the (unique) inverse of A.

For example,

1 4 2|1 0 o

=2 0 =10 1 0 —Rueky

2 1 310 0 1
R,—b—%Rl
Rz--plll-RI
R,—)RJ—ZR,

(I|B] is obtained, where I is the nxn identity
-2 0 -1j0 1 o
I 4 211 0 o
2 1 30 01

\2 1

Chapter 13A: Matrix Theory
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1
Hence the inverse of

¥

-2 0

2019 Year 6

R, R,

oo -
—_—— )

R, =R, -R,

S O =
(=B e =] b oofes r)=—

R-—»T’ER;

3

(=T R
o - O

R, =R -1R,
Rs=R, -%R;

(=l =

4 2
-1 is

1 3) (-2 1z

== eales 1a]—

o - O

o

-

<

=L 10
Lo
L1
o -4 0
L
DR
0 -1 0
T 5 0
e, 2 8
13 13 13
O =l =~
0% -w% %
=% & &
-4 1 -10 -4
Jl 1
== 4 -1 -3
% |
1 2 7 8

Alternatively, you can use a GC to find the inverse of a square matrix.

CAJ
1 4 2
20 -1
AR 2 1. .34
A1t
[ . Q769230769 -.7692307692
. 3076923077 -.076923076%
1721538461538 .5384615385
[ . B769230769 -.7692307692
. 3076923077 -.Q76923076»
171938461538  .5384615385
AnsPFrac
b SIS (Y,
13 13 13
L. S T}
13 13 i3
wn uf . B
............................... 13 .13 .13 1.

After entering the entries into matrix [A] in
the GC, press MATEX] ang go to the
NAMES menu, and select the matrix [A].
Then press I or 27 to invert the matrix

Press the [MATH] button and then press
[ENTER] to select 1 for Frac which will
give the matrix with rational entries, if
possible.

Chapter 13A: Matrix Theory
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How come this worlks?

IfE,E,,..

This implies tha A~ =E
matrix[A | I], we get

[E.

Thus, this provides
determinant,

Example 7

1 -1 2
Reduce |2 ¢ 3

to reduced row echelon form and write down the corresponding elementary
g 1 =]

matrices for each step.

’?olution

us another way to fj

hematics

E,..E,EA=]

~E, representing elementary row operations, such that

~EEA| E,..EEI]=[E,..E,EA| E,..EE|]

=[11a7]

.. ; e
nd the inverse of a matrix without having to find th

d
. ugmente
T s/on an a

e--EE . Thus, when we perform the multiplication

/
| Elemenmry e :
Elementar.y Row Elemer‘nary R /
- Operations | Matrices
T (1 <1 3 Z 1 00
2.0 3 01 0
0 =1 00 1
1\ © 0 =T -2 (1 00
R, —>R,-2R, (—1 l 0) 0 2 -1 21 0
001 y 1= 0 0 1
(1.0 1 (1 0 1
1o\ )
RI_>R|+R3 (D |0) 02 - 210
2 Bl 01 -1 0 0 1
7
1 0 1 oy
R2—>R2—-2R3 00 1 (‘l | __|2)
\0 1 _1) Q O
1 0 0 '? _l 3
0 0 1 -2 1 -2)
R, >R, —R (
1 ! 2 o 1 | = B
(10 0 3 3)
1 <1 1.2
R;—>R,+R, 00 (_1
J ) 01 0)
1 00 3 - 3
R R 010 [—1 ( =2I i
l<_) ’ 7‘ 00 lJ =72 1 = o
7
i Chapter 13A: Matrix Theory
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Thus, for the above example, we can write that

3 13
Hence, the inverseof |2 0 3 |is (_z 1ot
g g ol 22

NOTE:

For a square matrix A, the

following are equivalent:
L]

A is non-singular (mverhble)

o A exists

o det(A)#0

e A isrow equivalenttol

Chapter 13A: Matrix Theory
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5 Applications of Matrices : System of Lincar Equations \
| System of Linear Equations

A system of m linear equ

: . : . ions cach in n
ations in n# unknowns X1, X2, ..., Xn is a sct of m linear equations
unknowns:

ayX, +a,x, +----i-a'1"x'r = bl
ayX, +a,,x, g, X =b,

)

amlxl F amzxz Fomeds aumxn :b

m

where bi's and a;'s are constants.
The i and in each aij are known as the subscri
For example, a12 = coefficient of the 2
i.e. aij = coefficient of the jth unknown i
Note that we will only deal with the ¢

pts which are used to identify the location of ai.
unknown in the first equation.

n the ith equation.

ase where b’s and a;’s are real.

We also call a system of linear equatio
(a) A solution of the system () is a
every equation in (I).

(b) The set of all solutions of

ns as a linear system.

sequence of » numbers {s1, 52,..., 50} which is a solution of

Theorem 5.1

Every system of linear ¢
solutions.

quations has either no solution, exactly one solution or infinitely many

Note: Theorem 5.1 is not true if the equations in the system are not all linear.

! . aXx+a,y=b .
In two-dimensional space, the two equations in the system{ " - " represent two straight

ayx+a,y=,
lines.

Then, the system has
(i) no solution if and only if

. 0y
(i)  has exactly one solution if and only if ¥ ( qu) =
(ii))  infinitely many solutions if and only if ¥

ax+a,y+a;z=4

In three-dimensional space, the three equations in the system Ay X +ay,y +ayz = b, represent

ayx+a,y+a,z=b,

three planes. In Chapter 5C: Vectors III, we have seen that there are 3

possible cases on the
intersection of 3 planes:

Infinitely many
Exactly one Infinitely many solution (plane)

i solution (line) Chapter 13A: Matrix Theory
solution Page 24 of 30
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5.2

We may rewrite the linear system (*) as a matrix equation:

or

Solving for the unknowns x1, X2, -.

2019 Year 6

No solution

Matrix Representation of a Linear System

Ax=Db, where A=

given that the coefficients aj’s and the values bi's are known.

The matrix containing all th

is called the coefficient matrix.

The matrix containing A as a sub-matrix and an additional last column vector b, w

represents the whole system of linear equations, denoted by

1s called the augmented matrix [A|b].

411

az

ajz

-

az

Am2

ayX, +ax, +o+a,x, = b,
o L R R =b, *)
Ay Xy + QppXa T7° + X :bm /‘\T\
(a, ag = &) ) by
aﬂ a23 BB a2n x;’/ — bz
AN aml am! amn xrf bm
b
a, a, a, X 1
b
X h
n 2 @2 X= - and b= .’ 5
- kd
aml aml e amn ‘rn bm
X,
; X,
., Xn is the same as solving for the unknown vector X =| " |»
xﬂ‘
a,  dp ay,
. - a')| Ay a?,.,
e coefficients of the unknowns, namely A= | "= = !
am] aml armr

hich then
- - dip|b

azn by

- .

amn bm

Chapter 13A: Matrix Theory
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Example 8

Fyer . - % . .
Write down the augmented matrix representing the following system of linear equations :

X +2y—z+w =)0
3x -5y +5z- w =1
y —z+ilw =7

2019 Year6

11x el =1
Solution : A T R | X 0
2 =F § v
O 1 -1y Z 7 (-1
w8 o} W |

d 0

5.3 Solving a System of Linear Equations Using Matrices

Let’s say we want to solve the following system of linear €quations:

X+y+3z=0-———— 1)
22X T Y e 2)
3x+9y=3———__ (3)
' 31|90
Its augmented matrixis |2 -2 2|4
39 013
If we want to solve “by hand”, then:
Step System of Linear Eqns Row Operations Augmented Matrix
x+y+3z=0-———- ¢)) ' VT AR, TR
2x-2y+2z=4————— 3] 2 -2 2|4
3x+%y=3-———- 3) 3 9 0|3
x+y+3z=0-—-—- M 1 1 3]0
(2)+2 X=y+z=2em——e 2) Pe—§r i (¥
3x4+9y=3-————- 3) 3 0]3)
Eliminate =z —2x+4y=—6-———- ¢} fel A+ 018
in (1): X—-y+z=2————- (2) R,=R,-3R, -1 1|2
M=3%2) | 3x40p=3-———_ 3) 3 0f3)
Elimmiratex | —2x#4y=—6-————~ M % (2 4 0]-6
in (3): X=-y+z=2————- (2) R, =R, +=R, 1=l 12
() +3x1) 15y =—6————— 3) 0 15 0]-6
Find y in -2x+4y=-6-———— ¢)) : -2 4 0]-6)
3): D & 7 - (2) ;—=>—R, 1 -1 1|2
2 - 15 B L B8
(3)+15 R I — 3) 2

Chapter 13A: Matrix Theory
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m -
s, the metl 1 st B o ; \ g
Tht p— ]]Od of row operations is a “short-hand” notatjon way of solving system of linear
EREASEE U 1and.  The reduced row-echelon form of the augmented matrix will yield the
solution easily,
With the GC app Plysmlt2, we can use it to help to solve a system of linear qu'aﬁ(’ffs- Now, we
shall explore how we can use matrices to help us in solving the system of linear equations.
First, represent the system of linear equations by its corresponding augmented matrix.
Then, reduce the augmented matrix to reduced row-echelon form.
In reduced row-echelon form, check
)] any inconsistent row?
If so, then the linear system has no solution.
(i) [1]x] emerges?
The linear system has a unique solution given by X.
(iii)  others?
Then the linear system has infinitely many solutions.
Example 9
Solve the following system of equations
(a) 5 B0 it =] (b) X+ 2% — Xy X, = 0
X +3x, +x, =4 3y, = 5x, +5x, —x, =1
X, +3.'f: +2x, = 3 xn-x+ Tyt
X +x; =1
(©) X, +2x,—x,+x,=0
3% —5x, +2x; #ix, =1
x, =X +7x,=-7
x, +x;,—13x, =14
Solution :

Chapter 13A: Matrix Theory
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Example 10
Determine v

, s Institution H2 Fugh e, Mathcmalics
/‘—__‘ 

alues of 4 such that
X+2y—z=1

Clyvd 2x+5y 4+ gz =3 \‘
\,-J/,}/3r+ay+62=4 '
has (i) no solution;

(i) more th’an one solution;
Solve the equatlons cot

(iii) a unique solutjon.
mpletely if cases (ii) & (iii).

= {
f e ‘} ¢ ' E;_‘? IR).-QRI I | )
_ | @+2)| |
(2 5 Q) 3) _Ruii_‘_zi;&ﬁ 0 [
= 4 ¢

019-4 9
‘ \[Rs") R; - (a-6)R
i i
o | ay
(0 O Pidg-o*

l‘ )
-7’0
eﬁu Q{‘mm‘ L\O«v@ no \M{/ﬂ"\gv\

Midq-a’=0 ond atF J Gotradictory |
ﬁ m (1-0) (34a) =0

Q‘“—S
> 1) 214 40-0020 ang T-a=0
(‘IHQ)@-TCI):‘O ). O=T
¥~ 11197
o x—91=

o
1-Fq:7) .
- [ \j:]"o)z'
|5 e

cl)0| 59 P ‘t U\W %Qlﬂ\
O o M, y=] " 2=t
Hene

q ~
: 2240 ] 2 =l |‘ bah 7’0
'y -qQ _ | ,L_[_q
Hi] C (3{-0):[‘ 0 “; s

both = 0

T4a ,"34!‘1

=
21440 -4

DA Ma[rix 'Theory
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