

JURONG PIONEER JUNIOR COLLEGE 2021 JC2 H2 Chemistry (9729) Preliminary Exam Paper 1 (Worked Solutions)

Qn	Ans										
1	В	6	Α	11	С	16	В	21	Α	26	D
2	С	7	Α	12	В	17	D	22	В	27	С
3	С	8	Α	13	С	18	D	23	С	28	В
4	D	9	Α	14	В	19	С	24	D	29	Α
5	В	10	D	15	С	20	D	25	Α	30	В

1 Answer: B

The reaction causes the original particle to lose 1 proton, 1 electron and gain 1 neutron.

Options A and C both have the same number of electrons and protons before and after the reaction.

Option **D** shows a decrease in number of electrons and protons (36 in Kr to 35 in Br) but the number of neutrons remain unchanged (both particles have 40 neutrons).

2 Answer: C

From Figure 1, large increase between the 2nd and 3rd electron removed indicates that there are two valence electrons in element **P**. Hence element **P** is in group 2.

P⁺: ns¹

From the electronic configuration of P⁺, the point corresponding to the second IE of element P is **C**.

3 Answer: C

***A** SiCl₄ has 4 bond pairs and no lone pairs around Si

- ***B** SO₂ has 2 bond pairs and 1 lone pair around S ✓C IF₂⁻ has 2 bond pairs and 3 lone pairs around I
- → bond angle is 109.5 °.
- → bond angle is < 120 °.
- → bond angle is 180 °.
- ***D** CH_3^+ has 3 bond pairs and no lone pairs around C
- \rightarrow bond angle is 120 °.

4 Answer: D ✓A and B The structures of N₂O₄ and (CH₃CO₂H)₂ dimers are shown below. hydrogen bond $\delta +$ hydrogen bond \cap

 N_2O_4

 $(CH_3CO_2H)_2$

 \checkmark **C** The CH₃ groups in (CH₃CO₂H)₂ is still tetrahedral around the C, thus the dimer is non- planar.

***D** Due to p-p orbital overlap, the electrons are delocalised across the O=N-O bond, making all the nitrogen-oxygen bonds to be of the same strength and thus of the same length.

A_{r} of Si = $\left(\frac{92.2}{100} \times 28\right) + \left(\frac{4.7}{100} \times 29\right) + \left(\frac{3.1}{100} \times 30\right) = 28.109$						
×A A _r of Si = 28.099						
*C A _r of Si = 28.668						
×D <i>A</i> _r of Si = 28.854						
Answer: A						
Since 1 $CH_4 = 2 O_2$						
50 cm ³ of CH ₄ requires 100 cm ³ of O ₂ for complete reaction.						
Since CO_2 will be absorbed by the alkaline KOH, it will not be collected.						
Volume of gas collected = volume of O_2 left = 150 – 100 = 50 cm ³						
Answer: A						
Total amount of heat evolved = $\frac{m}{46.0} \times 1371 \text{ kJ}$						
Total amount of heat transferred = $300 \times c \times \Delta T$ J = $\frac{300 \times c \times \Delta T}{1000}$ kJ						
$\therefore \text{ efficiency} = \frac{300 \times \mathbf{c} \times \Delta T}{1000} \div \frac{m \times 1371}{46.0} \times 100\% = \frac{300 \times \mathbf{c} \times \Delta T \times 46.0}{1000 \times m \times 1371} \times 100\%$						
Answer: A						
Using $\Delta G = \Delta H - T\Delta S$, the negative gradient of the graph in the Ellingham diagram corresponds to ΔS of the reaction.						
Reaction II has a gradient of zero, that means $\Delta S = 0$ (reject options B and C)						
Reaction I has a positive gradient, that means $\Delta S < 0$ \rightarrow decrease in disorderedness						
Reaction III has a negative gradient, that means $\Delta S > 0 \rightarrow$ increase in disorderedness						
Answer: A						
The graph shows that when pressure increases, % products at equilibrium decreases. → POE shifts left to form less gas molecules (reject options B and C)						
The graph also shows that when temperature increases, % products at equilibrium increases → POE shifts right to favour endothermic reaction (reject option D)						

10 Answer: D (2 and 4 only)

At time t, the change caused POE to shift right to form more SO₃.

- **×1** Adding a catalyst will not cause a shift in POE.
- ✓2 When temperature decreases, POE shift right to favour exothermic reaction.
- ***3** The addition of inert gas at constant volume results in the partial pressures of all gases to remain unchanged. POE will not shift.
- ✓4 At equilibrium before time t: From graph: $n_{SO_2} = 0.5$ mol and $n_{SO_3} = 0.3$ mol

$$n_{O_2} = 0.4 - \frac{0.80 - 0.50}{2} = 0.25 \text{ mol}$$

$$\therefore K_{\rm c} = \frac{\left[{\rm SO}_3\right]^2}{\left[{\rm SO}_2\right]^2 \left[{\rm O}_2\right]} = \frac{\left(\frac{0.3_{10}}{10}\right)^2}{\left(\frac{0.5_{10}}{10}\right)^2 \left(\frac{0.25_{10}}{10}\right)} = 14.4 \text{ mol}^{-1} \text{ dm}^3$$

11 Answer: C

$$pOH = pK_w - pH = -lg(2.4 \times 10^{-14}) - 7.4 = 6.22$$

 $\therefore [OH^-] = 10^{-6.22} = 6.03 \times 10^{-7}$

12 Answer: B

Since equal volumes of the solutions are used:

ionic product of PbX₂ =
$$\left(\frac{0.100}{2}\right) \left(\frac{1.0 \times 10^{-2}}{2}\right)^2 = 1.25 \times 10^{-6} \text{ mol}^3 \text{ dm}^{-9}$$

Since ionic product is less than the K_{sp} of PbC l_2 and PbBr₂ but larger than the K_{sp} of PbI₂, only PbI₂ will precipitate out.

13 Answer: C

When temperature increases, POE shifts left to favour endothermic reaction $\rightarrow K_p$ will decrease (reject options A and B)

When temperature increases, **<u>both</u>** forward and backward rate increases. Since POE is shifting left, the backword rate increases more. (**reject option D**)

14 Answer: B (1 and 2 only)

Using the Boltzmann Distribution:

- ✓1 increasing temperature increases the number of molecules with energy \geq Ea
- ✓2 When more gas is added at the same temperature and volume, the number of molecules with a particular energy all increases.
- ***3** Compressing the gas increases pressure, but will not change the energy distribution of the molecules.

15 Answer: C (2 and 3 only)

- *1 A catalyst reduces the activation energy of the reaction by providing an alternative pathway/mechanism of lower activation energy. The KE of the reacting particles are not affected.
- ✓2 A catalyst increases both the forward and backward rate of a reversible reaction by the same extent.

3

✓3 See definition of the catalyst in option 1.

16	Answer: B								
	From Data Booklet: $2H^+ + 2e \ll H_2 \qquad 0.00V$								
	or the metal not to dissolve. E $_{\text{coll}}$ for the reaction must be negative								
	×A Cr ²⁺ + 2e \ll Cr −0.91 V → E _{cell} = 0.00 − (−0.91) = +0.91 V								
	✓ B $Cu^{2+} + 2e \ll \frac{Cu}{Cu} + 0.34 \text{ V}$ → E _{cell} = 0.00 - (+0.91) = -0.34 V								
	*C $Fe^{2+} + 2e \ll Fe^{-0.44} V$ > $E_{cell} = 0.00 - (-0.44) = +0.44 V$								
	*D $Pb^{2+} + 2e \ll \frac{Pb}{Pb} -0.13 \text{ V}$ * E _{cell} = 0.00 - (-0.13) = +0.13 \text{ V}								
17	Answer: D								
	*A To obtain pure copper, the pure copper electrode should be the anode (negative electrode) which is electrode Q.								
	•B [CuSO₄] remains unchanged as the amount of Cu ²⁺ that is oxidised at the anode is replenished by the amount of Cu that is reduced at the cathode.								
	$Q = (40.0)(26.8 \times 60) = n(96500)$								
	$n_{\rm e} = 0.666 {\rm mol}$								
	Since 1 Cu = 2e 0.666								
	Mass of Cu = $\frac{0.000}{2} \times 63.5 = 21.2 \text{ g}$ (option C is wrong)								
	% by mass of Ag = $\frac{26.47 - 21.2}{26.47} \times 100 = 20$ %								
18	Answer: D								
	From graph, the sharp drop in ΔH (and hence the boiling point) from B to C signifies the change from giant structure to simple covalent molecules (group 14 to group 15 element)								
	*A Element E is in group 17 and Element F is in group 18. Both are non-polar molecules								
	thus will both be soluble in warm benzene (non-polar solvent).								
	*B Elements A , B and C are in groups 13, 14 and 15 respectively. The chlorides of these elements are acidic since the structure of the chlorides are becoming increasingly covalent in nature.								
	*C Element G is in group 1 and Element D is in group 16. The oxide of G (basic oxide) and								
	the oxide of D (acidic oxide) will form a neutral salt.								
	• D Oxide of A could be $A_{2}O_{3}$ which will react with excess NaOH to from $A_{1}(OH)_{4}$ complex.								

