
2022 JC2 H1 Math Prelim Marking Scheme

Qn	Solution
1	Let the amount invested in Banks <i>A</i> , <i>B</i> and <i>C</i> be <i>x</i> , <i>y</i> and <i>z</i> respectively.
	We have
	x + y + z = 25000 (1)
	0.06x + 0.07y + 0.08z = 1620 (2)
	y - z = 6000(3)
	By GC, $x = 15000$, $y = 8000$, $z = 2000$.
	\therefore the amount invested in Banks A, B and C are \$15000, \$8000 and \$2000 respectively.
	Tespectively.
2(a)	$2v^2 + 1$
-(4)	$\int \frac{3x^2 + 1}{2\sqrt{x}} \mathrm{d}x$
	$2\sqrt{x}$
	$=\int \frac{3}{2}x^{\frac{3}{2}} + \frac{1}{2}x^{-\frac{1}{2}}dx$
	$=\frac{3}{5}x^{\frac{5}{2}}+\sqrt{x}+c$
	5 where c is an arbitrary constant
	where c is an arbitrary constant
2(b)	$d \left(\sqrt{4x-3} \right)$
	$\frac{\mathrm{d}}{\mathrm{d}x}\ln\left(\frac{\sqrt{4x-3}}{x^2-1}\right)$
	$d \begin{bmatrix} 1 & (1 - 1) \\ (1 - 1) \end{bmatrix}$
	$=\frac{\mathrm{d}}{\mathrm{d}x}\left[\frac{1}{2}\ln\left(4x-3\right)-\ln\left(x^{2}-1\right)\right]$
	$=\frac{2}{4x-3}-\frac{2x}{x^2-1}$
3i	dy = 4
	$\frac{dy}{dx} = 1 - \frac{4}{x^2}$
	$1 - \frac{1}{x^2} > 0$
	1 4
	$1 > \frac{1}{x^2}$
	$x^2 > 4$
	$x^2 - 4 > 0$
	$dx = x^{2}$ $1 - \frac{4}{x^{2}} > 0$ $1 > \frac{4}{x^{2}}$ $x^{2} > 4$ $x^{2} - 4 > 0$ $(x - 2)(x + 2) > 0$ $x = x^{2} - 4 = 0$
	x < -2 or $x > 2$
	(rejected since $x > 0$)

4(iii)	$\int_{-\frac{3}{2}}^{0} 10 - \frac{15}{2x+3} \mathrm{d}x + \frac{1}{2} \left(\frac{5}{2}\right) 5$
	$J_{-\frac{3}{4}} = 2x+3 = 2(2)$
	$= \left[10x - \frac{15}{2}\ln 2x+3 \right]_{-\frac{3}{4}}^{0} + \frac{25}{4}$
	$= \left(0 - \frac{15}{2}\ln 3\right) - \left(-\frac{15}{2} - \frac{15}{2}\ln \frac{3}{2}\right) + \frac{25}{4}$
	$= -\frac{15}{2}\ln 3 + \frac{15}{2} + \frac{15}{2}\ln 3 - \frac{15}{2}\ln 2 + \frac{25}{4}$
	$=-\frac{15}{2}\ln 2+\frac{55}{4}$
	$=\frac{1}{4}55-30\ln 2$
	p = 55, q = 30
5i	$C = 20x - 5\sqrt{x} + 0.01x^2 + 500$
5ii	(x, S) = (0, 420) and $(45, 60)$
	$m = \frac{420 - 60}{0 - 45} = -8$
	0-45
	sub (0,420) and $m = -8$ into
	straight line: $S = mx + c$
	420 = -8(0) + c
	c = 420
	$\therefore S = -8x + 420$
5 iii	Revenue = (-8x + 420)x
	Profit = revenue - cost
	$= -8x^2 + 420x - 20x + 5\sqrt{x} - 0.01x^2 - 500$
	$= -8.01x^2 + 400x - 500 + 5\sqrt{x}$
	$\therefore a = -500$
5iv	$\frac{\mathrm{d}P}{\mathrm{d}x} = \frac{5}{2\sqrt{x}} + 400 - 16.02x$
	$\frac{\mathrm{d}P}{\mathrm{d}x} = 0$
	$\frac{5}{2\sqrt{x}} + 400 - 16.02x = 0$
	using GC graph, find x-intercept $\Rightarrow x = 25$
	$\therefore S = -8(25) + 420 = 220$ million dollars =\$220000,000
	$ = -0(25) + 720 - 220$ mmon donais $-\phi 220000,000$
	Method 1:
	$\frac{\mathrm{d}^2 P}{\mathrm{d}x^2} = -\frac{5}{4}x^{-\frac{3}{2}} - 16.02 = -16.03 < 0 \therefore P \text{ is maximum.}$
	Method 2:
	Method 2:

	x	24.99	25	25.01	
	$\frac{\lambda}{\mathrm{d}P}$	0.160	0	-0.160	
	$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}x}$	0.100	0	0.100	
	shape				
	$\therefore P$ is maximum	n.		, , , , , , , , , , , , , , , , , , ,	
5v	when $x = 40$,				
	$\frac{\mathrm{d}P}{\mathrm{d}x} = -240.40 =$	-240 million of	dollars/plane		
	dx		-		
	When the produ	ction level incr	eased from 40 t	o 41 planes,	
	the profit decrea	ses by approxi	mately \$240 mi	llion dollars.	
	The production	level should be	decreased in th	is case.	
6(i)	The probability of	of an employee	is working from	m home is consta	ant at 0.37.
	Whether an emp	loyee is workir	ng from home is	s independent of	any other employee.
(ii)	Let <i>X</i> be the num	nber of employ	ees from the 30	who are workin	g from home.
	$X \sim B(30, 0.37)$				
	P(X > 18) = 1 - P	$P(X \leq 18)$			
	· · · ·	030511= 0.003	05 (3sf)		
(iii)	$X \sim B(30, 0.37)$)			
	· · · · · · · · · · · · · · · · · · ·	0.37 = 11.1 (exa	act)		
	Variance = 30×0				
6(iv)	Method 1:	· · · ·			
	Probability of a	company gettin	g the monetary	incentive	
	$= \mathbf{P}(X > 18) = 0.0$	0030511			
	Answer: 0.00305	511 × (1 – 0.00	$(3511) \times 2 = 0.0$	0608	
	Method 2:	C • • •		, · · ,	
	Let Y be the no. $Y \sim B(2, 0.00303)$	-	nat will get the	monetary incent	ive out of 2.
	P(Y=1) = 0.0060	08			

7a (i)	N1N2N3N4N5N6N7 S1S2 = 3 object to arrange Number of ways = $8! \times 3! = 241920$
7a (ii)	Considering only the 8 north zone and 2 south zone schoolsMethod 1:There are 3 cases:Case 1: $S _____S__$ 2! ×8! = 80640
	Case 2: $S_{} S_{} S_{$

	Case 3:	S	S 2! ×8! =80	540
	Number of ways = $3 \times 80640 = 241920$			
	Method 2	:	× 6 <u>1</u>	
	$S_{1}S_2$ $N_1 N_2 = 3$ object to averge			
	Number of ways = ${}^{8}C_{6} \times 6! \times 2! \times 3! = 241920$			
7b	East (out ofWest (out of 6)			
		14)		
	Case 1	1	6	
	Case 2	2	5	
	Case 3	3	4	
	Number of ways = ${}^{14}C_1 \times {}^{6}C_6 + {}^{14}C_2 \times {}^{6}C_5 + {}^{14}C_3 \times {}^{6}C_4 = 6020$			

unbiased estimate of the population mean 8(i) $=\frac{\sum x}{60}=\frac{231}{60}=3.85$ (exact) unbiased estimates of the population variance $= \frac{60}{59} \left(\frac{\sum \left(x - \bar{x} \right)^2}{60} \right) = \frac{12.733}{59} = 0.215813 = 0.216$ (3sf) (ii) Let μ cm be the average body length of the cockroach. Let *X* be the body length (in cm) of a randomly chosen cockroach. $H_{a}: \mu = 4$ (claim) Test Against $H_1: \mu \neq 4$ (researcher's suspicion) at 1% sig. level Under H₀, $\overline{X} \sim N\left(4, \frac{0.21581}{60}\right)$ approx. by Central limit theorem since n = 60 large, Test Stats value = -2.501p - value = 0.0124 > 0.01 (do not reject H₀) There is insufficient evidence at 1% significance level to conclude that the mean body length of the cockroach is not 4 cm. (iii) Test $H_a: \mu = 4$ (claim) Against $H_1: \mu \neq 4$ (researcher's suspicion) at 5% sig. level Under H₀, $\overline{X} \sim N\left(4, \frac{0.22}{60}\right)$ approx. by Central limit theorem since n = 60 large, Test statistics $z = \frac{k-4}{\sqrt{0.22/20}}$ 0 The given conclusion is to reject H_0 , therefore the test stats z lies in the critical/rejection region. $\frac{k-4}{\sqrt{0.22/60}} < -1.96$ or $\frac{k-4}{\sqrt{0.22/60}} > 1.96$ \Rightarrow k < 3.88(3sf) or k > 4.12 (3sf)

9(i)	y (oral component mk)
	27.8 8.8 y z z z z z z z z
(ii)	$r = 0.986 (3sf)$ There is a strong and positive linear correlation between the marks for the written component and the oral component. As the marks for the written component marks also increases. $x = 0.986 (3sf)$ $y = a+bx$ $a=7.174747475$ $b=0.7016835017$ $r^2=0.9720210167$ $r=0.9859112621$
(iii)	$y = 0.702 \ x + 7.17$ $a = 7.17 \ (2sf) \text{ and } b = 0.702 \ (3sf)$ $\frac{\text{Significance of gradient b:}}{\text{For each increase of 1 mark in the written component } (x), \text{ the oral component } (y) \text{ increases by } 0.702 \text{ marks.}$ $\frac{\text{Significance of y-intercept a:}}{\text{The oral component } (y) \text{ mark is expected to be } 7.17}$ $(x = 0, y = 7.17) \text{ if a student scores zero mark for the written component } (x).$
(iv)	Estimated oral component mark y = 0.70168 (17) + 7.1747 = 19.1 marks r = 0.986 is very close to +1 , therefore there is a strong positive linear correlation between the written component marks and the oral component marks. $x = 17$ is within the data range of x (i.e. $2 \le x \le 30$). This is an interpolation. Hence the estimate for the oral component mark is reliable.

10(i)	i = 393 - (x - 20) - 20 - 85 - 18 = 290 - x no. of pupils who study Mathematics only = 393 - (x - 20) - 20 - 85 - 18 = 290 - x no. of pupils who study Physics but not Chemistry = (x - 20) 290 - x = 8(x - 20) : x = 50
10(ii)	$P(M \cap C) = \frac{105}{393} = \frac{35}{131} = 0.267(3sf)$
10(iii)	$P(M) = \frac{375}{125} = \frac{125}{125}$
	$P(C) = \frac{123}{393}$ $P(M)P(C) = \frac{5125}{17161} = 0.299(3sf) \neq 0.267 = P(M \cap C)$
	$P(M)P(C) = \frac{1}{17161} = 0.299(3sf) \neq 0.267 = P(M \land C)$ $\therefore M \text{ and } C \text{ are not independent events.}$
	-
10(iv)	The probability of a student taking Mathematics given that the student also takes Chemistry.
	$P(M \mid C) = \frac{P(M \cap C)}{P(C)} = \frac{\frac{105}{393}}{\frac{123}{393}} = \frac{35}{41}$
10(v)	Number of students taking exactly two subjects=30+85=115
	Method 1: $\frac{{}^{115}C_2 {}^{278}C_1}{{}^{393}C_3} = 0.182(3s.f)$
	Method 2:
	$\frac{115}{393} \cdot \frac{114}{392} \cdot \frac{278}{391} \cdot 3 = 0.182(3s.f)$

nedium size egg, $M \sim N(49.6, \sigma^2)$	11
0.17173	(i)
0.17172	
0.17173 $Z \sim N(0,1)$	
2 1 ((0,1)	
$\rightarrow \sigma = 5.70$	
$7001)^2 = 32.5$	
 a large size egg, $L \sim N(56.8, 6.1^2)$	(ii)
×56.8 , 4×37.21) i.e. N(227.2 , 148.84)	
> 250) = 0.030822 = 0.0308 (3sf)	
 a of large agg with mass > 250 grams	(;;;)
(n, 0.030822)	(111)
$P(X \ge 1) < 0.9$	
-P(X=0) < 0.9	
P(X=0) > 0.1	
$(0.030822)^n > 0.1$	
$(0.96918)^n > 0.1$	
Method 2:	
, , , ,	
> 0.1 $n < \frac{n}{\ln(0.96918)}$	
<i>n</i> < 73.55	
s 73.	
 $M_3 + M_4 + M_5 + M_6) - 1.5(L_1 + L_2 + L_3 + L_4)$ where	(iv)
21)	
$1.5(56.8 \times 4) = -43.2$	
$(1.5)^2 (37.21 \times 4) = 529.89$	
$+M_{5}+M_{6}>1.5(L_{1}+L_{2}+L_{3}+L_{4}))$	
$M_4 + M_5 + M_6) - 1.5(L_1 + L_2 + L_3 + L_4) > 0)$	
	1
$ x 56.8, 4 \times 37.21) i.e. N(227.2, 148.84) $ $ > 250) = 0.030822 = 0.0308 (3sf) $ $ s of large egg with mass > 250 grams (n, 0.030822) P(X \ge 1) < 0.9 P(X = 0) < 0.9 P(X = 0) > 0.1 (0.96918)^n > 0.1 (0.96918)^n > 0.1 \frac{Method 2:}{(0.96918)^n > 0.1} n < \frac{\ln(0.1)}{\ln(0.96918)} n < 73.55 s 73. \frac{M_3 + M_4 + M_5 + M_6) - 1.5(L_1 + L_2 + L_3 + L_4) \text{ where } 21 1.5(56.8 \times 4) = -43.2 1.5)^2 (37.21 \times 4) = 529.89 + M_5 + M_6 > 1.5(L_1 + L_2 + L_3 + L_4)) $	(iii)