

Anglo-Chinese School (Barker Road)

PRELIMINARY EXAMINATION 2024

SECONDARY FOUR NORMAL (ACADEMIC)

SCIENCE (CHEMISTRY) PAPER 3 5105/3

1 HOUR 15 MINUTES (FOR BOTH PAPERS)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil. Do not use staples, paper clips, glue or correction fluid. Write your name, class and index number on the Answer sheet in the spaces provided.

There are **twenty questions** on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

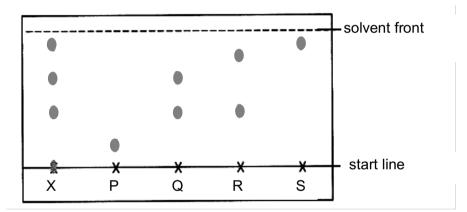
Read the instructions on the Answer Sheet very carefully.

Answers to Paper 3 and Paper 4 must be handed in separately. Each correct answer will score one mark. A mark will not be deducted for a wrong answer. You are advised to spend no more than **30 minutes** on **Paper 3**. You may proceed to answer Paper 4 as soon as you have completed Paper 3. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on the last page. The use of an approved scientific calculator is expected, where appropriate.

This document consists of 8 printed pages.

1 Which substance is a liquid at 50 °C?

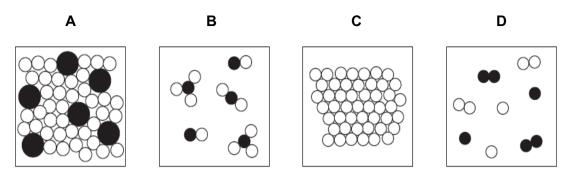
	melting point/ °C	boiling point/ °C
Α	-117	43
в	-93	69
С	36	49
D	55	103


2 A salt is made by adding an excess of an insoluble metal oxide to an acid.

Which method is used to remove excess metal oxide from the mixture?

Α	chromatography	С	distillation

- B crystallisation D filtration
- **3** Dye X is compared with four other dyes, P, Q, R and S using chromatography.


The chromatogram is shown below.

What can be deduced from the results of chromatography?

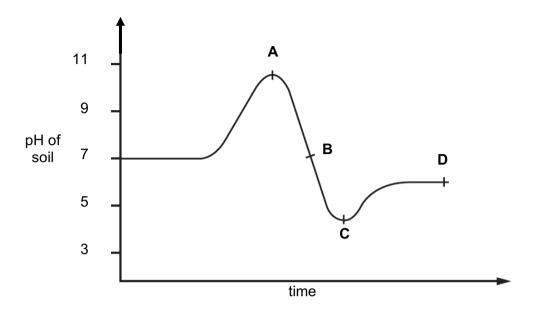
- **A** Dyes P and S are insoluble in the solvent.
- **B** Dyes P and S are pure.
- **C** X consists of dyes Q, R and S.
- **D** X contains two different components.

4 Which diagram shows a representation of a mixture of compounds?

5 The number of atoms can be derived from the chemical formula of the compound.

Which row is **not** correct?

	formula	number of atoms	
Α	CaCO₃	1 calcium, 1 carbon, 3 oxygen	
в	C_2H_5OH	1 carbon, 5 hydrogen, 1 oxygen	
С	КОН	1 hydrogen, 1 oxygen, 1 potassium	
D	H_2SO_4	2 hydrogen, 4 oxygen, 1 sulfur	


- 6 In the Periodic Table, how does the metallic character of the elements vary from left to right across a period?
 - A It decreases.
 - B It increases.
 - **C** It increases then decreases.
 - **D** It stays the same.
- 7 X and Y exist as diatomic molecules. X is less reactive than Y.

What are elements X and Y?

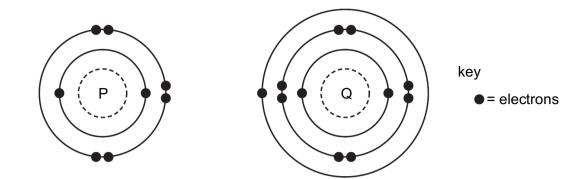
	Х	Y
Α	bromine	iodine
в	iodine	bromine
С	potassium	sodium
D	sodium	potassium

8 The graph shows how the pH of soil in a field changes over time.

At which point was the soil neutral?

9 Which of the following oxides is amphoteric?

Α	aluminium oxide	С	copper(II) oxide
В	calcium oxide	D	iron(III) oxide


- 10 Which statement about acids and bases is correct?
 - A Acids react with metal oxides to form salts and hydrogen.
 - **B** Alkalis are bases which are insoluble in water.
 - **C** Neutralisation is the reaction between acids and bases.
 - **D** Potassium hydroxide dissolves in water and turns blue litmus red.
- **11** Aqueous solution X is added to aqueous ammonium chloride.

The mixture is heated and ammonia gas is given off.

Which is X?

- A ammonium sulfate C sodium chloride
- B hydrochloric acid D sodium hydroxide

12 The electronic structures of atoms P and Q are shown.

P and Q react to form an ionic compound.

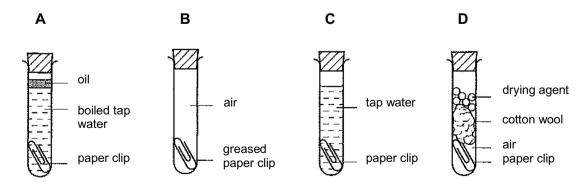
What is the formula of this compound?

Α	PQ ₂	С	Q_2P
В	P ₂ Q	D	QP_2

13 Which is the most abundant noble gas in clean air?

Α	argon	С	krypton
В	helium	D	xenon

14 Some processes that produce pollutants are listed below.


- 1 combustion of fossil fuels
- 2 lightning activity
- 3 volcanic eruptions

Which process may produce sulfur dioxide?

Α	1 and 3 only	С	1, 2 and 3
В	2 and 3 only	D	3 only

15 Four shiny steel paper clips are placed in test-tubes and left for some days.

In which test-tube does the paper clip rust?

16 The reactions of four metals, W, X, Y and Z, with water, steam or dilute hydrochloric acid are described.

W reacts violently with cold water.

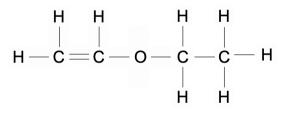
X does not react with cold water but reacts with steam.

Y reacts slowly with cold water.

Z does not react with hydrochloric acid.

What is the order of reactivity of W, X, Y and Z?

	most reactive			east reactive
Α	W	Y	Х	Z
в	W	Х	Y	Z
С	Z	Х	Y	W
D	Z	Y	Х	W


17 What is the main source of energy in natural gas?

Α	carbon monoxide	С	methane
В	hydrogen	D	nitrogen

18 Which substance is an alkane?

Α	C_4H_8	С	C_6H_{14}
В	C ₅ H ₁₀	D	C_7H_{14}

19 The structure of a compound is shown.

Which row correctly describes the properties of the compound?

	decolourises aqueous bromine	hydrocarbon
Α	no	no
в	no	yes
С	yes	no
D	yes	yes

- 20 Which statement about recycling of plastics is correct?
 - **A** During the chemical method of recycling, plastic waste is converted into long-chain alkanes and alkenes.
 - **B** Plastics can be recycled by melting and cooling small pieces of polyethene waste before being pulled and cut into pellets.
 - **C** Plastic waste is converted into different raw materials like short-chain alkanes and alkenes through chemical reactions such as combustion.
 - D Recycling of plastic waste is important because plastics are biodegradable.

The Periodic Table of Elements

								C.C.	Ground								
~	2								<u>-</u>			13	14	15	16	17	18
	ı						•				1	2	-	2	2	:	2
																	∼ 1
							L Pidrocon										P I G
				Key			1 1										4
e	4		proton	proton (atomic) number	umber	-						5	9	7	8	6	10
:	Be		atc	atomic symbol	lo							ш	U	z	0	ш	Ne
lithium	beryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
	6		relati	relative atomic mass	nass							11	12	14	16	19	20
	12											13	14	15	16	17	18
	Mg											Al	N.	٩	ა	Cl	Ar
sodium 23	magnesium 24	С	4	5	9	7	ø	0	10	11	12	aluminium 27	silicon 28	phosphorus 3.1	sulfur 30	chlorine 35 5	argon 40
19	20	21	22	23	24	25	26		28	29	30	31	32	33	34	35	36
; x	n C	i v.	¦ i=	2 >	ίČ	μ	о Ц		ìŻ	ŝĒ	Zn	- C	i e	As As	- d V	2 Å	γ γ
potassium	calcium	scandium	titanium	vanadium	chromium	mandanese	i i		nickel	conner	zinc.	dallium millium	dermanium	arsenic	selenium	hromine	krvnton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	44		46	47	48	49	50	51	52	53	54
Rb	S	≻	Zr		Мо	Tc	Ru		Pd	Ag	Сd	I	Sn	Sb	Те	Ι	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium		palladium	silver	cadmium	indium	ti ti	antimony	tellurium	iodine	xenon
00	QQ	80	מ		90		101	_	001	001	7	0	<u>מ</u>	77	07	171	101
55	56	57-71	72		74	75	76		78	79	80	81	82	83	84	85	86
S	Ba	lanthanoids	Ŧ		>		So		Ę	Au	Hg	Τ <i>ι</i>	Pb	ē	Ъо	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium		platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
133	137		178	181	184	186	190		195	197	201	204	207	209	I	I	I
87	88	89–103	104	105	106	107	108		110	111	112	113	114	115	116	117	118
Ľ	Ra	actinoids	ŗ	Db	Sg	Bh	Hs		ß	Rg	ő	ЧN	Εl	Mc	Ľ	Ts	Og
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium		darmstadtium	roentgenium	copernicium	nihonium	flerovium	moscovium	livermorium	tennessine	oganesson
I	I		I	I	I	I	I		I	I	I	I	I	I	I	I	I
		57	58	65	09	61	62	63	64	65	66	67	68	69	70	71	
lanthanoids	noids	La		ቯ	ΡN	Ρm	Sm	Еu	Gd	Тb	D	Ч	ш	Tm	Υb	Lu	
	0	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
		50		- +	ŧ.	1		701	10	201	00	CD 00	101	103	01	0.1	
		68 80		91	92	93	94	95	96	97	<u> 8</u> 6	66	100	101	102	103	
actinoids	oids	Ac		Ра		ЧN	Pu	Am	БО	贸	ŭ	Es	ш	Md	No	Ľ	
		actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
		I		231		1	1	I	1	I	I	1	I		I	I	

Anglo-Chinese School (Barker Road)

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). The Avogadro constant, $L = 6.02 \times 10^{23}$ mol⁻¹

Preliminary Examination 2024

Secondary Four Normal (Academic) Science (Chemistry) 5105 Paper 3