Q1	Ans: A				
	Compression of air, the fall of water droplets and the spreading of petrol all have very little resistance to its motion.				
	But when applying paint to the surface of a wall it would actually take more effort to 'push' the paint across the wall.				
Q2	(a) Friction is the force which opposes the relative motion of the two bodies in contact or tends to oppose one body from moving relative to the other.				
	(b) (i)	2			
	1. Friction is useful in braking when the brakes of a moving car is stepped.				
	Friction is a useful force to enable walking by the floor exerting a forward force on the shoe/foot.				
	3. Friction provides the driving force of a car through the frictional force exerted by the road surface on the tire in the forward direction of the car.				
	 In unloading heavy wooden crates from a lorry on an inclined plank, friction slows down the crates as the crates slide down the plank. 				
	(ii) Without friction during braking, the car will skid and may result in accident. 1				
	Without friction between the floor and the shoe/foot, a person may slip and falls.				
	Without friction to provide driving, it is difficult to control a vehicle on the road which will result in accident.				
	Without friction during unloading heavy wooden crates on the incline plank, the crates may slide down too fast and cause injury to workers.				
Q3	Ans: B				
	For parallel combinations, $k_{eff} = k_1 + k_2$ (make sure you know how to derive this)				
	$F = k_{eff} x$				
	10 = 2k (0.2)				
	k = 25 Nm ⁻¹				
Q4	When $W = 0$ N, the length L is the natural length (L ₀) of the spring.				
	From the graph, when $W = 0$ N, $L = Lo = 6$ cm				
	Using Hooke's Law, F_s = ke where F_s = force on spring, e = extension of spring, k = spring cor	istant			
	Therefore, $k = \frac{F_s}{e}$				
	Using the point (5 N, 10 cm), $k = \frac{W}{(L - L_o)} = \frac{5}{(10 - 6) \times 10^{-2}} N m^{-1} = 125 N m^{-1}$				

Q5	First, find the resultant force F_R of the 3 coplanar forces:	
	Fy F _R θ F _x	1
	y-component of the resultant force, $F_y = 40 \text{ N}$	
	x-component of the resultant force, $F_x = 50-20 = 30$ N	
	$\tan \theta = (30/40) \rightarrow \theta = 36.9^{\circ}$	
	Resultant = $\sqrt{30^2 + 40^2} = 50 \text{ N}$	
	To maintain equilibrium, the counter force must be of same magnitude but in opposite direction to F_R . Hence, F = 50 N at bearing of 220° (2 s.f.)	1 1
Q6	As this is an equilibrium system, resultant force is zero and resultant torque is zero. Hence all three lines of force must intersect at a common point, and, when the force vectors a joined head-to-tail they should form a closed triangle with arrows pointing in the same direct (anticlockwise in this case).	are ion
	Answer: B	

07	Essent	ial questions
	1	What is this force that the question speaks of? \rightarrow force of gum on tooth
	2	What is this force that the question speaks of \rightarrow force of guin on tooth What does it mean that the tooth is in equilibrium? \rightarrow no net force acting on body, and no net
	۷.	moment about ANY POINT on the tooth
	3	Given the directions of the two 2.5 N forces, which is the only way that force can act to put the
	5.	tooth in equilibrium? \rightarrow Since the two 2.5 N forces give a resultant force that acts in the direction
		of X the 3 rd force must act opposite in direction <i>(i.e. direction 7)</i> and he of equal magnitude to
		the resultant of the two 2.5 N forces
	1	Ear 2 contains of the two 2.5 N forces.
	4.	closed triangle since no net force evicts
		closed thangle since to rectorce exists.
		i b accould around the 2rd face much he
		(DV equilibriant, for Sim for musine
		equal & opp to this resultant tone
		NS / => Direction must be Z
		N Kr. Cr.
		(Answer (D)
	By elin	nination, answer is D.
	How to	o verify that magnitude is 1.3 N?
	→ By s	ine rule, $\frac{F_{net of 2.5N forces}}{F_{net of 2.5N forces}} = \frac{2.5 N}{F_{net of 2.5N forces}}$
		$\sin 30^{\circ}$ $\sin 75^{\circ}$ $= 1.204 = 1.2N$
	rnet of	$2.5N \ forces - 1.294 - 1.51V$
	A 10 01/10	
	Answe	ע ז

	Note beca	ote: "Total clockwise moments = Total anticlockwise moments" is NOT acceptable ecause this only covers 2-D cases.		
(c)	(i)	2 key words : labelled and vector diagram Let T be the pull exerted by the cable, W the weight of the section S and F_B the force exerted by B on S which is specified as a horizontal force in the question. F_B 25°	1	
		W T	1	
		 The length of the arrows drawn must reflect the magnitude of the forces. Indicate the directions. Vector diagram shows a closed polygon since forces are in equilibrium. Question did not ask for a free-body diagram but a vector diagram. Thus a free-body diagram is not acceptable here. 		
	(ii)	From the vector triangle, T = W / sin 25°	1	
		= $(3.0 \times 10^5)/\sin 25^\circ$ = 7.1 x 10 ⁵ N (2 s.f.)	1	
		$F_{\rm B} = W / \tan 25^{\circ}$	1	
		$= 6.4 \times 10^5 \text{ N} (2 \text{ s.f.})$	1	
	(iii)	All three lines of force will meet at the same point.	1	
		If the free-body diagram is drawn, since locations of T and W are given by the question, location of F_B is deduced to act along the upper surface as shown:		
		F _B		

$R_A = \sqrt{460^2 + 883^2} = 1000N$ (2 s.f.)	1
Direction:	
$\tan \theta = \frac{883}{460}$	
$\rightarrow \theta = 63^{\circ}$, anticlockwise above the horizontal	1
OR	
For vertical equilibrium of forces,	
$R_A \sin \theta = (20 \times 9.81) + (70 \times 9.81)$	
$R_A \sin \theta = 883$ (1)	
For horizontal equilibrium of forces,	
$R_A \cos \theta = R_B$	
$R_A \cos \theta = 460$ (2)	
(1)/(2):	
$\tan \theta = \frac{883}{2}$	
460	
$\rightarrow \theta = 63^{\circ}$, anticlockwise above the horizontal	
Sub into (1) or (2):	
$R_A = 1000 \text{ N} (2 \text{ s.f.})$	

Q11	Ans: D $P_x = P_{atm} + \rho gh$ (h: vertical height of liquid column) $= 100kPa + (1020)(9.81)(1.00 sin 30^{\circ}) = 105 kPa$
Q12	Ans: D Upthrust = Difference in forces acting on the top and bottom surfaces $= F_2 - F_1$ $= P_2A - P_1A$ since $pressure = \frac{force}{area}$

Q13	(a)	(i)	Point C shown at centre of rectangle.
		(ii)	Arrow vertically downwards, from C.
	(b)	(i)	Reaction / upwards / supporting / normal reaction force / friction force(s) at the rod.
		(ii)	Comes to rest with (line of action of) weight acting through rod so that weight does not have a moment about the pivot / rod.

A1	Ans: A
	For X: $W = 2k(e)$
	Therefore $e_x = \frac{W}{2k}$
	For Y: $\frac{1}{k_{eff}} = \frac{1}{2k} + \frac{1}{2k} \Longrightarrow k_{eff} = k$
	W = k(e)
	Therefore $e_{y} = \frac{W}{k}$
	For Z: $\frac{1}{k_{eff}} = \frac{1}{2k} + \frac{1}{k} \Longrightarrow k_{eff} = \frac{2k}{3}$
	$W = \frac{2k}{3}(e)$
	Therefore $e_z = \frac{3W}{2k}$

(a) When the ladder 'slips', it rotates about its C.G. The ladder will slip when it experiences a net torque. This happens when the total clockwise moments exceeds the total anticlockwise moments.

Before the ladder slips, it is still in *equilibrium*. Additionally, at the instant JUST before it slips, friction is at its *maximum* value, i.e. 300 N. [1] Applying the conditions for equilibrium:

- Balancing horizontal forces: $N_1 = maximum \ value \ of \ f = 300 \ N$
- And applying the Principle of Moments, taking moments about the ground-end of the ladder,

Total clockwise moments = Total anticlockwise moments $20(9.81)(1.5 \cos 60^\circ) + 60(9.81)(x \cos 60^\circ) = (300)(3 \sin 60^\circ)$ [1] x = 2.15 = 2 m (1 s. f) [1]

Either of the above free body diagrams is acceptable.

Note: R is the resultant contact force exerted by the ground on the ladder. R is the resultant force of N_2 and f. $R \cos\vartheta = f$

 $R \sin \vartheta = N_2$

(b)

Slipping occurs when the ladder experiences a net torque (because it starts rotating). The higher up the technician climbs, the greater the clockwise moment caused by his weight. [1] If the wall is rough, an upward frictional force will act at the wall-end of the ladder, and can produce a greater total anticlockwise moment to balance the clockwise moment caused by the weight of the technician. Therefore the range of x for which equilibrium is possible is increased. Thus the answer is Yes, the technician would be able to climb higher if the wall was rough. [1]

Supplementary Questions

S1	Key Words:
	• Rest
	 Friction between ladder and ground, ladder and wall
	 Arrows that represent forces on ladder
	Essential Questions:

	1)	What is the main physics concept this question is testing?	
		• The main physics concept is the conditions for equilibrium system, where resultant	
		moment and resultant forces are zero.	
	2)	What are the essential skills required for this question?	
		• As options A to D are pictorial representation, the skills needed here are visualization	
		(model of drawings) and free body diagram.	
	3)	Why are frictions given? Which directions are they acting on?	
		• To prevent the ladder from sliding down, friction on ladder by wall should be upwards	
		and friction on ladder by ground should be leftwards.	
	4)	Are there other forces acting on the ladder, if yes, what are they and which directions are	
		they acting on?	
		 There are weight of ladder and normal contact force from wall on ladder and from 	
		ground on ladder. Weight is acting downwards and normal contact force acted by the	
		wall on the ladder is rightwards and normal contact force acted by the ground on the	
	Ε)	ladder is upwards.	
	5)	How do we link the arrows to all these forces?	
		Ine arrows at the point of contact with the wall and ground is a representation of resultant foreas of friction and normal contact forea acting on the ladder by the wall	
		and ground respectively.	
		and ground respectively.	
	Extensi	on Question:	
	6)	How do we link the arrows to the condition of equilibrium system?	
	,	• The arrows will form a closed polygon with all arrows pointing in the same anti-	
		clockwise or clockwise direction if the resultant force of the system is zero.	
		• The line of action (arrows) shall pass through the same point if the resultant moment is	
		zero, as long as there are no parallel arrows.	
	Answe	r: C	
S2	C is not	t correct because torque, just like force, is a vector quantity which has both magnitude and	
	directio	on.	
	The correct statement should be "The torque provided by the vertical forces is equal and opposite		
	to the torque provided by the horizontal forces.		

Answer: C

S3	(a)	The mass is not uniformly distributed throughout the boat. The mass of the boat is more concentrated on its left side	1
	(b)	No net force acting on the boat.	1
		No net moment of force about any point.	1
	(c)	The question requires 'using principle of moments' to find the 2 tensions in the rope.	

	V : volume of fluid column			
	Density, $\rho = \frac{\text{mass}}{\text{Volume}} \rightarrow \text{mass} = \rho V = \rho Ah$	1		
	$Pressure = \frac{Force}{P_1} \rightarrow F_1 = P_1A, F_2 = P_2A$			
	Area			
	Fluid is static \rightarrow Upward force = Downward force	1		
	$F_2 = \text{weight of fluid column} + F_1$ $P_2A = (nAh)g + P_1A$			
	$P_2 = \rho hg + P_1$			
	Pressure difference (increase) down the fluid column, $\Delta P = P_2 - P_1 = Ohg$			
	6 2			
	Examiners' Report			
	Few explained clearly what they were doing and a sizeable minority thought they were proving Archimedes principle.			
S5	Ans: A			
	Since pressure is independent of the shape of the container or the mass	of t	he entire fluid,	
	The pressure P exerted by the liquid on the base of the jar,			
	P = hρg = (0.200)(600)(9.81) = 1.18 x 10 ³ Pa			
S6	Ans: C			
	Upthrust is due to the pressure difference between the top and bottom s	surf	faces of the imme	ersed
	object.			
S7	Ans: B			
	Upthrust is due to the pressure difference between the top and bottom	surf	faces of the imme	ersed
	object. For a floating object which is in vertical equilibrium, by Newton's force acts, and thus the upthrust must be equal to the weight of the object.	1 st	law no net vertic	al
	······································			1
S8	(a) $p = (9.8 \times 10^3)h$			
	$= 9.8 \times 10^{\circ} \times 0.055$ = 539 Pa			1
	$F = p \times A = 539 (1.3 \times 10^{-3})$ = 0.7007 = 0.701 N (3 s f)			1
	- 0.7007 - 0.701 N (3 3.1.)			
	(b) Upwards			1
	(c) The magnitude of the force calculated in part (a) is the value of upth	rust	t acting on the	
	metal tube.			1
	(upthrust in this case) must equal the sum of downward forces (weig	i ot ht i	upwards forces in this case).	
	Hence weight equals 0.701 N.		,	
S9	Object suspended in the air			

S10	Ans: A As time progresses, air resistance increases with speed. By Newton's 2 nd law of		
	motion, resultant force decreases.		
S11	Ans: A <i>U</i> << <i>W</i> due to large differences in density of air compared to density of water.		
S12	Ans: C		
	<pre>/hen under free-fall, a = -g. On hitting the water, it experiences viscous force pwards. The sphere hence either accelerates downwards with lower magnitude r it may start to deccelerate downwards</pre>		
S13	From the information given in the question:		
	$W_{beaker+water} = X, W_{solid} = Y,$		
	From Archimedes' Principle, Upthrust or <u>Upward</u> force that fluid exerts on the solid, U = Z		
	FBD (Free Body Diagram) of Solid		
	T: Tension in the string on the Solid		
	$\mathbf{I}_{\mathbf{Y}}^{T} \mathbf{U} = \mathbf{Z}$	1 [Archimedes principle]	
	<u>FBD (Free Body Diagram) of Beaker of water (Without the Solid)</u>		
	U': Downward force that the solid exerts on the fluid, U' = U = Z N: Normal contact force exerted by the balance on the beaker N': Normal contact force exerted by the beaker on the balance. N'=N		

