(Pure Mathematics) Chapter 2: Inequalities

Objectives

At the end of the chapter, you should be able to:

• solve quadratic inequalities.

Content

- 2.1 Definition of Inequality2.1.1 Basic Rules of Inequalities
- 2.2 Solving Quadratic Inequalities
- 2.3 Solving Simultaneous Inequalities

References

- 1. New Additional Mathematics, Ho Soo Thong (Msc, Dip Ed), Khor Nyak Hiong (Bsc, Dip Ed)
- 2. New Syllabus Additional Mathematics (7th Edition), Shinglee Publishers Ptd Ltd

2.1 Definition of Inequality

An inequality is a mathematical statement involving any of '<' , '>' , ' \leq ' and ' \geq '.

Examples:
$$2x \ge 6$$
, $\sin x + 4\cos x < \sqrt{\frac{2}{3}}$, $x^3 - 5x \le \frac{2}{x}$.

2.1.1 Basic Rules of Inequalities

Let $a, b, c \in \mathbb{R}$.

Basic Rules	Comments	Examples
If $a < b$, then	Addition and subtraction	Given $3 < 6$, then
(i) $a + c < b + c$	of the same number on	3+2 < 6+2;
(ii) $a-c < b-c$	both sides of the inequality	3 - 1 < 6 - 1.
	does not change the	
	inequality sign.	
If $a < b$ and $c > 0$, then	Multiplication and division	Given $3 < 5$, then
(i) $ac < bc$	of the same positive	$3 \times 2 < 5 \times 2$;
(ii) a b	number at both sides of the	$\frac{3}{4} < \frac{5}{4} .$
(ii) $\frac{a}{c} < \frac{b}{c}$	inequality does not	$\frac{-}{4} \frac{-}{4}$.
	change the inequality sign.	
If $a < b$ and $c < 0$, then	Multiplication and division	Given $3 < 7$, then
(i) $ac > bc$	of the same negative	$3 \times (-2) > 7 \times (-2);$
	number at both sides of the	
(ii) $\frac{a}{c} > \frac{b}{c}$	inequality always change	$\frac{3}{-3} > \frac{7}{-3}$.
	the inequality sign.	-5 -5
If $a < b$ and $b < c$, then $a < c$.	Inequalities are transitive .	If $-3 < 2$ and $2 < 5$,
	1	then $-3 < 5$.
If <i>a</i> and <i>b</i> are both positive, $0 < a < b$,	Taking reciprocal of the	If $2 < 5$, then
A A A	two positive numbers in	,
then $\frac{1}{a} > \frac{1}{b}$	an inequality always	$\frac{1}{2} > \frac{1}{5}$.
a b	changes the inequality	2 3
	sign.	
If $a < b$ and $c < d$, then $a + c < b + d$		If $1 < 2$ and $3 < 5$,
		then $1 + 3 < 2 + 5$.
Note: $a < b$ and $c < d$ does not imply		But
a-c < b-d		1 < 2 and $3 < 5$,
		$\Rightarrow 1-3 \leq 2-5$.
$ab > 0 \Leftrightarrow$ either $(a > 0 \text{ and } b > 0)$		
or $(a < 0 \text{ and } b < 0)$		
$ab < 0 \Leftrightarrow$ either $(a > 0 \text{ and } b < 0)$		
or $(a < 0 \text{ and } b > 0)$		

Common Mistakes	Comments	Counter Examples
x < 3 and $y < 4$	Do not subtract inequalities in this	2 < 3 and $0 < 4$ but
$\Rightarrow x - y < -1$	manner as it may lead to a sign change.	2-0 ≮ 3-4
$\frac{3}{x-1} > -5$ $\Rightarrow 3 > -5(x-1)$	Do not cross multiply unless the terms are positive, as it may lead to a sign change.	Let $x = -2$ $\frac{3}{(-2-1)} > -5$ but $3 \ge -5(-2-1) = 15$
$x < 2 \Longrightarrow x^2 < 4$	Do not square both sides as the terms may have different signs, as it may lead to a sign change.	$-4 < 2 \text{ but}$ $(-4)^2 \not< 2^2$

- **Q:** What do *x* and *y* represent in the table directly above?
- **A:** They represent unknown constants (which might be positive **or** negative).
- **Q:** What does it mean to "solve an inequality"?
- A: It is to find the range of values of the quantity you are interested in (usually x) which satisfy the given inequality.

Example 1 Linear Inequality

Solve the inequality 6-3x < 2.

Solution:

$$6-3x < 2$$

$$-3x < 2-6$$

$$-3x < -4$$

$$x > \frac{-4}{-3}$$

$$x > 1\frac{1}{3}$$

2.2 Solving Quadratic Inequalities

Consider the quadratic inequality (x-2)(x+3) < 0. The range of values of x which satisfies the inequality can be found from the quadratic curve y = (x-2)(x+3) as follows:

For (x-2)(x+3) < 0 (i.e. *y* is *negative*), we choose the interval for which the curve is *below* the *x*-axis.

$$(x-2)(x+3) < 0 \Longrightarrow -3 < x < 2$$

For (x-2)(x+3) > 0 (i.e. y is positive),

we choose the interval for which the curve is *above* the *x*-axis.

 $(x-2)(x+3) > 0 \Longrightarrow x < -3 \text{ or } x > 2$

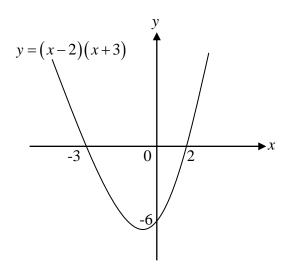
Note that $(x-2)(x+3) = 0 \Rightarrow x = 2$ or x = -3.

For $(x-2)(x+3) \le 0$ (i.e. $y \le 0$), we choose the interval for which the curve is *on* and *below* the *x*-axis. $(x-2)(x+3) \le 0 \Rightarrow -3 \le x \le 2$

For $(x-2)(x+3) \ge 0$ (i.e. $y \ge 0$), we choose the interval for which the curve is *on* and *above* the *x*-axis. $(x-2)(x+3) \ge 0 \Rightarrow x \le -3$ or $x \ge 2$

A guide to solving quadratic inequalities:

- 1. Collect all the terms to one side of the inequality so that the other side is zero.
- 2. Find the *x*-intercepts of the graph by factorization or by using the quadratic formula.
- 3. Sketch the quadratic function and identify the required region.
- 4. Solve.



Example 2

Find the exact solution set of the following inequalities.

(a) $(x-1)^2 > 9$ (b) $2+3x-2x^2 \le 0$ (c) $(x+3)(x+4) \le 6$ (d) $x^2 < 1+2x$ (e) $x^2+7 > 4x$ (f) $x^2+2x+5 < 0$

Solution:

(a)
$$(x-1)^2 > 9$$

 $(x-1)^2 - 3^2 > 0$
 $(x-1-3)(x-1+3) > 0$
 $(x-4)(x+2) > 0$
 x

x < -2 or x > 4The solution set is $\{x \in \mathbb{R} : x < -2$ or $x > 4\}$ or $(-\infty, -2) \cup (4, \infty)$ **Common mistake:**

Note that (x-4)(x+2) > 0 does **NOT** mean x > 4 or x > -2.

(b)
$$2+3x-2x^2 \le 0$$

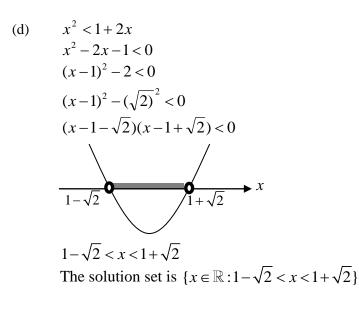
 $(2-x)(1+2x) \le 0$
 $(x-2)(1+2x) \ge 0$

$$x \le -\frac{1}{2} \quad \text{or} \quad x \ge 2$$

The solution set is $\{x \in \mathbb{R} : x \le -\frac{1}{2} \text{ or } x \ge 2\}$ or $(-\infty, -\frac{1}{2}] \cup [2, \infty)$

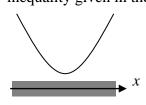
(c) $(x+3)(x+4) \le 6$ $x^{2}+7x+12-6 \le 0$ $x^{2}+7x+6 \le 0$ $(x+6)(x+1) \le 0$ x

 $-6 \le x \le -1$ The solution set is $\{x \in \mathbb{R} : -6 \le x \le -1\}$ or [-6, -1]



Alternatively, we can solve it this
way:
Let
$$x^2 - 2x - 1 = 0$$
.
Then
$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-1)}}{2(1)}$$
$$\vdots$$
$$= 1 \pm \sqrt{2}$$
$$x^2 < 1 + 2x$$
$$x^2 - 2x - 1 < 0$$
$$\left[x - (1 + \sqrt{2})\right] \left[x - (1 - \sqrt{2})\right] < 0$$
$$(x - 1 - \sqrt{2})(x - 1 + \sqrt{2}) < 0$$
(Then sketch the curve on the left
and write the answer)

(e) $x^{2} + 7 > 4x$ $x^{2} - 4x + 7 > 0$ $(x-2)^{2} - 2^{2} + 7 > 0$ $(x-2)^{2} + 3 > 0$ Since $(x-2)^{2} \ge 0$, $(x-2)^{2} + 3 \ge 3 > 0$ for all real values of x. Thus, all real values of x will satisfy the inequality given in the question.



The solution set is \mathbb{R}

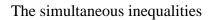
(f) $x^{2} + 2x + 5 < 0$ $(x+1)^{2} - 1^{2} + 5 < 0$ $(x+1)^{2} + 4 < 0$ Since $(x+1)^{2} \ge 0$, $(x+1)^{2} + 4 \ge 4 > 0$ for all real values of x. Thus, there is no real value of x that satisfy the inequality given in the question.

The solution set is \emptyset

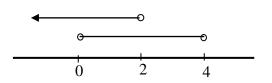
2.3 Solving Simultaneous Inequalities

In inequalities, a < x < b means x > a and x < b.

"and" in this context has the meaning of "intersection" which is represented by \cap .



0 < x < 4 and x < 2 give 0 < x < 2.



Alternatively, we can solve it this way: Let $x^2 - 4x + 7 = 0$. Discriminant $= (-4)^2 - 4(1)(7) = -12 < 0$ Since coefficient of $x^2 > 0$ and discriminant < 0, therefore $x^2 - 4x + 7 > 0$ for all real values of x. Thus, all real values of x will satisfy the inequality given in the question. The solution set is \mathbb{R}

Alternatively, we can solve it this way: Let $x^2 + 2x + 5 = 0$. Discriminant $= 2^2 - 4(1)(5) = -16 < 0$ Since coefficient of $x^2 > 0$ and discriminant < 0, therefore $x^2 + 2x + 5 > 0$ for all real values of x. Thus, there is no real value of x that satisfy the inequality given in the question. The solution set is \emptyset

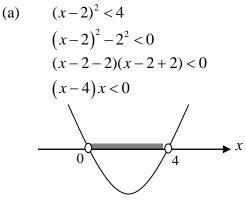
"or" in inequalities has the meaning of "union" which is represented by \cup .

The simultaneous inequalities 0 < x < 4 or x < 2 give x < 4.

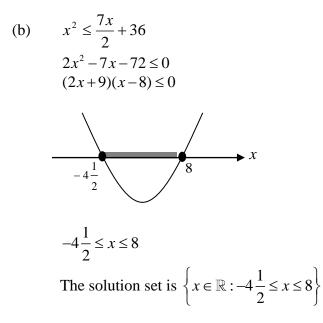
Exercise 1

- 1. Find the exact solution set of the following inequalities.
 - (a) $(x-2)^2 < 4$ (b) $x^2 \le \frac{7x}{2} + 36$ (c) $4x + 1 - x^2 < 0$ (d) $\frac{5x^2 - 2x - 4}{x^2 + 1} \le 4$ (e) $x^2 - 2x + 5 < 0$ (f) $x^2 - 2x + 5 > 0$

Solution:



0 < x < 4The solution set is $\{x \in \mathbb{R} : 0 < x < 4\}$



Consider $2x^2 - 7x - 72 = 0$
$r = \frac{-(-7) \pm \sqrt{49 - 4(2)(-72)}}{\sqrt{49 - 4(2)(-72)}}$
2(2)
$x = \frac{7 \pm 25}{4} \Longrightarrow x = -4\frac{1}{2} \text{ or } x = 8$
4 2

(c)
$$4x+1-x^2 < 0$$

 $x^2-4x-1>0$
 $(x-2)^2-2^2-1>0$
 $(x-2)^2-(\sqrt{5})^2 > 0$
 $(x-2-\sqrt{5})(x-2+\sqrt{5}) > 0$
 $(x-(2+\sqrt{5}))(x-(2-\sqrt{5})) > 0$

Consider
$$x^2 - 4x - 1 = 0$$

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-1)}}{2(1)}$$

$$x = \frac{4 \pm \sqrt{20}}{2} = \frac{4 \pm 2\sqrt{5}}{2} = 2 \pm \sqrt{5}$$

$$x < 2 - \sqrt{5}$$
 or $x > 2 + \sqrt{5}$
The solution set is $\left\{ x \in \mathbb{R} : x < 2 - \sqrt{5} \text{ or } x > 2 + \sqrt{5} \right\}$

(d)
$$\frac{5x^{2}-2x-4}{x^{2}+1} \le 4$$

Since $x^{2}+1 > 0$, $x \in \Re$
 $5x^{2}-2x-4 \le 4(x^{2}+1)$
 $5x^{2}-2x-4-4(x^{2}+1) \le 0$
 $5x^{2}-2x-4-4x^{2}-4 \le 0$
 $x^{2}-2x-8 \le 0$
 $(x-4)(x+2) \le 0$
 -2
 4

The solution set is $\{x \in \mathbb{R} : -2 \le x \le 4\}$

(e)
$$x^2 - 2x + 5 < 0$$

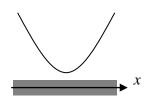
 $(x-1)^2 + 4 < 0$
Since $(x-1)^2 \ge 0$, $(x-1)^2 + 4 \ge 4 > 0$ for all real values of *x*.

Thus, there is no real value of x that satisfy the inequality given in the question. The solution set is \emptyset

(f) $x^2 - 2x + 5 > 0$ $(x-1)^2 + 4 > 0$

Since $(x-1)^2 \ge 0$, $(x-1)^2 + 4 \ge 4 > 0$ for all real values of *x*.

Thus, all real values of x will satisfy the inequality given in the question.



The solution set is \mathbb{R}

2. Find the range of values of x for which $x^2 - 5x + 1$ lies between -5 and 15 inclusive. Solution:

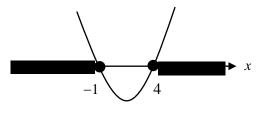
$-5 \le x^2 - 5x + 1 \le 15$		
$-5 \le x^2 - 5x + 1$	and	$x^2 - 5x + 1 \le 15$
$x^2 - 5x + 6 \ge 0$	and	$x^2 - 5x - 14 \le 0$
$(x-2)(x-3) \ge 0$		$(x-7)(x+2) \le 0$
$x \le 2 \text{ or } x \ge 3$		$-2 \le x \le 7$

The intersection of the above two inequalities gives $-2 \le x \le 2$ or $3 \le x \le 7$

3. Find the range of values of k for which the equation $x^2 + 2kx + 3k + 4 = 0$ has real roots. Solution:

Since $x^2 + 2kx + 3k + 4 = 0$ has real roots, Discriminant ≥ 0

 $(2k)^{2} - 4(1)(3k + 4) \ge 0$ $4k^{2} - 12k - 16 \ge 0$ $k^{2} - 3k - 4 \ge 0$ $(k - 4)(k + 1) \ge 0$



 $k \le -1$ or $k \ge 4$

- 4. Find the range of possible values of the constant k if the quadratic function $kx^2 + 4k kx 2x$ is always (i) positive (ii) negative. Solution:
 - (i) Since the $kx^2 + 4k kx 2x$ is always positive, the following 2 conditions must be met:

(1) Discriminant < 0 and (2)
$$k > 0...(2)$$

 $(-k-2)^2 - 4(k)(4k) < 0$
 $k^2 + 4k + 4 - 16k^2 < 0$
 $-15k^2 + 4k + 4 < 0$
 $15k^2 - 4k - 4 > 0$
 $(5k+2)(3k-2) > 0...(1)$
 $k < -\frac{2}{5}$ or $k > \frac{2}{3}$
Combining (1) and (2) gives $k > \frac{2}{3}$

(ii) Since the $kx^2 + 4k - kx - 2x$ is always negative, the following 2 conditions must be met:

(1) Discriminant < 0 and (2)
$$k < 0 - (2)$$

 $(-k-2)^2 - 4(k)(4k) < 0$
 $k^2 + 4k + 4 - 16k^2 < 0$
 $-15k^2 + 4k + 4 < 0$
 $15k^2 - 4k - 4 > 0$
 $(5k+2)(3k-2) > 0 \cdots (1)$
 x
 $-2/5$ $2/3$
 $k < -\frac{2}{5}$ or $k > \frac{2}{3}$
Combining (1) and (2) gives $k < -\frac{2}{5}$.

5. The curve C has equation $x^2 + (y-1)^2 = 4$. Find the range of values of k such that the line y = x + k + 1 intersects C exactly twice.

Solution:

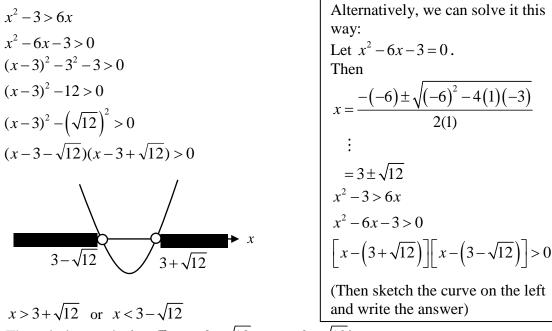
Substitute
$$y = x + k + 1$$
 into $x^{2} + (y - 1)^{2} = 4$,
 $x^{2} + (x + k)^{2} = 4$
 $x^{2} + x^{2} + 2kx + k^{2} = 4$
 $2x^{2} + 2kx + k^{2} - 4 = 0$
Since line cuts *C* twice, Discriminant > 0
 $(2k)^{2} - 4(2)(k^{2} - 4) > 0$
 $4k^{2} - 8k^{2} + 32 > 0$
 $-4k^{2} + 32 > 0$
 $k^{2} - 8 < 0$
 $(k + \sqrt{8})(k - \sqrt{8}) < 0$
 $-\sqrt{8} < k < \sqrt{8}$

Practise Questions

1. Find the exact solution set of the following inequality

$$x^2 - 3 > 6x$$

Solution:



The solution set is $\{x \in \mathbb{R} : x > 3 + \sqrt{12} \text{ or } x < 3 - \sqrt{12}\}$

2. [ACJC/H1 Promo/2017/Q1]

Find, algebraically, the range of values of *k* for which $(2-k)+2kx+x^2 > 0$ for all real values of *x*.

Solution:

Since $x^2 + 2kx + (2-k) > 0$,

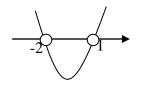
Discriminant < 0 and coefficient of $x^2 = 1 > 0$

$$(2k)^2 - 4(1)(2-k) < 0$$

$$4k^2 + 4k - 8 < 0$$

$$k^2 + k - 2 < 0$$

$$(k-1)(k+2) < 0$$



-2< *k* < 1

3. [NYJC/H1 Promo/2017/Q1] Find the range of values of k for which $kx^2 + (k+1)x + (k+1)$ is never negative for all real values of x.

Solution:

Since $kx^2 + (k+1)x + (k+1) \ge 0$, Discriminant ≤ 0 and coefficient of $x^2 = k > 0$ $(k+1)^2 - 4(k)(k+1) \le 0$ and k > 0 $(k+1)(k+1-4k) \le 0$ $(k+1)(1-3k) \le 0$ $k \le -1$ or $k \ge \frac{1}{3}$ Combining $k \le -1$ or $k \ge \frac{1}{3}$ and k > 0 gives $k \ge \frac{1}{3}$

4 [DHS/H1 Promo/2017/Q2]

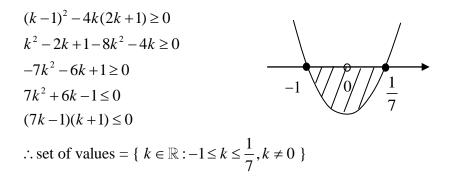
The line y = (2k+1)x + k intersects the curve $y = 1 - \frac{k}{x}$, where k is a non-zero constant. Without using a calculator, find the exact set of values of k.

Solution:

At point(s) of intersection,

$$(2k+1)x + k = 1 - \frac{k}{x}$$
$$\Rightarrow (2k+1)x^2 + (k-1)x + k = 0$$

Since line and curve may intersect at least once, Discriminant ≥ 0



Summary

Guide to solving quadratic inequalities:

- 1. Collect all the terms to one side of the inequality so that the other side is zero.
- 2. Find the *x*-intercepts of the graph by factorization or by using the quadratic formula.
- 3. Sketch the quadratic function and identify the required region.
- 4. Solve.

Checklist

I am able to:

solve quadratic inequalities