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Chapter
((JOSCILLATIONS

e Simple harmonic motion
* Energy in simple harmonic motion
» Damped and forced oscillations, resonance

Learning Outcomes

Candidates should be able to:
(a) describe simple examples of free oscillations.

(b) investigate the motion of an oscillator using experimental and graphical
methods.

(c) show an understanding of and use the terms amplitude, period, frequency,
angular frequency and phase difference and express the period in terms of both
frequency and angular frequency.

(d) recall and use the equation a=-w’x as the defining equation of simple
harmonic motion.

(e) recognise and use x = x, sinwt as a solution to the equation a = -a%x.

(f) recognise and use v =v,cosat and v = to,(xZ - x*).

(9) describe, with graphical illustrations, the changes in displacement, velocity and
acceleration during simple harmonic motion.

(h) describe the interchange between kinetic and potential energy during simple
harmonic motion.

(i) describe practical examples of damped oscillations with particular reference to
the effects of the degree of damping and to the importance of critical damping in
applications such as a car suspension system.

() describe practical examples of forced oscillations and resonance.

(k) describe graphically how the amplitude of a forced oscillation changes with
driving frequency near to the natural frequency of the system, and understand
qualitatively the factors which determine the frequency response and sharpness
of the resonance.

() show an appreciation that there are some circumstances in which resonance is
useful, and other circumstances in which resonance should be avoided.
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Oscillations and Waves — An Overview

Chapter 10: Oscillations
Chapter 11: Wave Motion

Oscillations  Chapter 12: Superposition

and Waves

Links
Between
Sections
and Topics

Periodic motion, where the pattern of movement repeats over time, is ubiquitous,
and arises for example when objects are perturbed from a condition of stable
equilibrium. While much of the motion we have considered is non-periodic, we have
studied uniform circular motion, which is periodic and regular. Even in one spatial
dimension, there can be complicated types of periodic motion. Nonetheless, we can
gain a deep understanding of periodic motion by analysing the mathematically
simplest case of free oscillations, known as simple harmonic motion (SHM). Such
sinusoidally varying motion is essentially a projection of uniform circular motion, and
provides a mathematical basis upon which to describe more complicated
oscillations. Naturally, we revisit concepts in kinematics, dynamics, forces and
energy in trying to understand SHM.

When we consider a system of connected particles, the idea of single particles
undergoing oscillations is the starting point that leads on to the idea of waves within
the system. While we have seen how powerful the particle picture is, it tums out that
the wave picture, generalised beyond classical mechanics, is equally fundamental
for describing and understanding the physical universe.

With waves, we move conceptually from physics of particles to the physics of
continuous media. All waves are disturbances which result in oscillations. The
oscillations then spread out as waves, which carry energy and can result in
disturbances far away. Waves are a means of transmitting energy without the
attendant transfer of matter. Remarkably, one of the many surprises of nature is
that electromagnetic waves can travel through a vacuum, an example of field
oscillations that do not require particles.

We can also discuss wave mechanics, as waves interact, though in a qualitatively
different way from how particles interact. The principle of superposition allows
accurate characterisation of interaction of waves. Interference and diffraction are
important wave phenomena due to the superposition of waves. However, there is
actually no clear distinction between interference and diffraction. The difference in
the usage of the terms is mainly historical. Many of the ideas introduced during the
study of waves in this section will later be important for appreciating the limitation of
classical physics in explaining the behaviour of matter on the atomic scale and
understanding quantum wave-particle duality.
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Applications

and

relevance to

daily life

Oscillations and waves play important roles in engineering and nature. In nature,
molecules in a solid oscillate about their equilibrium position; electromagnetic
waves consist of oscillating electric and magnetic fields, and waves are present
everywhere, e.g. light travelling from the Sun to Earth, water waves and sound

waves. The study and control of oscillation is needed to achieve important goals in
engineering, e.g. to prevent the collapse of a building due to waves created by an
earthquake. Furthermore, diffraction gratings allow us to determine the frequencies
of light sources ranging from lamps to distant stars. Optical engineers also create
optically variable graphics (OVG) on credit cards, which incorporate diffraction
grating technology, as an anti-counterfeiting measure.

Links to Core Ideas

Systems and Interactions

Models and Representations

Conservation Laws

* A wave is a source of
disturbance that can
transfer energy and
momentum through time
and space

* Interaction of
electromagnetic wave
with matter (e.g.
reflection, refraction,
diffraction, absorption,
scattering)

« Simple harmonic motion of a mass
characterised by a restoring force
that is proportional to its
displacement

¢ Mechanical wave model

» Wave nature of electromagnetic
radiation

« Superposition principle, which is
used to explain wave phenomena
(e.g. standing waves, two-source
interference, diffraction)

» Common representations: e.g.
wavefront diagrams, displacement-
time graph (characteristic of every
particle), displacement-position
graph (snapshot of wave in time)

» Simplifying assumptions: e.qg.
ignore dissipative forces like friction
and air resistance (negligible
attenuation)

¢ Conservation of
mechanical energy in
an SHM system

e The relationship
between intensity and
distance for a point
source

e The intensity
distribution of a
double-slit
interference pattern
obeys the
conservation of
energy
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10.1 Simple Harmonic Motion (S.H.M.

O ————

Introduction A periodic motion is one in which an object continually retraces its path at equal
time intervals. Many systems exhibit periodic motion. The molecules in a solid
oscillate about their equilibrium positions; electromagnetic waves are characterised
by oscillating electric and magnetic field vectors; and in alternating-current electrical
circuits, voltage and current vary periodically with time.

An oscillation is a special periodic motion in which the oscillator moves to and fro
about an equilibrium position. This is also called harmonic motion. Simple harmonic
motion is a type of such a motion.

Consider a mass attached to the end of a fixed spring (Fig. 10.1.1a), or a pendulum
(Fig. 10.1.1b). In both cases, the mass and the pendulum are at their equilibrium

positions. The equilibrium position is a position where the net force on the object
is zero.

Fig. 10.1.1a .
Fig. 10.1.1b

If the mass or pendulum is displaced from its equilibrium position (i.e. pulled either
to the left or right), it will experience a net force that tries to restore it to its
equilibrium position. This is called the restoring force.

The mass-spring system and pendulum systems described above are examples of
oscillators undergoing harmonic motion. We will examine these two systems in
greater detail later in this chapter.

For any object or particle oscillating about an equilibrium point, its motion is simple
harmonic when the magnitude of the restoring force is directly proportional to the
displacement of the object.
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Definition

Definition

o

Definitions

Formulae

O

Simple harmonic motion is defined as the motion of a particle about a fixed point
such that its acceleration is proportional to its displacement from the fixed point and
is always directed towards the point.

Mathematically, aoc—-X

ie. a=-o’x

where a is the acceleration,
x is the displacement from the equilibrium position,
'’ is a positive constant, where  is the angular frequency of the oscillation.

Angular frequency is defined as the rate of change of phase angle of the
oscillation, and is equal to the product of 2z and its frequency (i.e. @ =2xf).

The unit of o is radian per second (rad s).

The negative sign in the equation indicates that the acceleration a acts in a direction
opposite to that of the displacement x.

Since the acceleration of the object is not constant, it is not possible to apply the
usual kinematics equations in solving SHM problems.

@ Do not confuse angular frequency with angular velocity.

Even though the two have the same units of rad s™ and are written with the same
symbol @, they are not the same. In simple harmonic motion, @ stands for angular
frequency. In uniform circular motion, @ stands for angular velocity, which is the
rate of change of angular displacement.

Other related quantities:

Amplitude is the magnitude of the maximum displacement of the particle from its
equilibrium position.
Period T is the time take! o complete one oscillation.

Frequency fis the number of oscillations per unit time.

T and f are related by the equation:| T =% = o =2nrf

If Tis measured in seconds, then fwill be in hertz, Hz. (S.1. unit) where 1 Hz = 1 s
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Characteristics Consider a particle N undergoing simple harmonic motion between points A and_ B,
of S.HM. about an equilibrium position O. Throughout the motion, N experiences a restoring
force, and hence acceleration, towards O.

Fig. 10.1.2 illustrates the motion of N at various instances of the motion.

The displacement x from point O, the velocity v and acceleration a of particle N are
also indicated in Fig. 10.1.2. The direction towards the right is taken to be positive.

Motion Diagram X v a
N speeding up from B| A O «— B - -
towards O = j T ¥ | ]
N slowing down from O A ¥— O B _ - +
towards A N ' : A= | —=p
N speeding up from A| A —> O B | _ + *
towards O 'f'N‘ ; - SRS
N slowing down from O | A (?_> B . + _
towards B = ! N |

Fig. 10.1.2

The motion of particle N has the following characteristics:
e Itis symmetrical about the equilibrium position O.
o |OA|=|0OB|=x,, where xo is the amplitude of the motion.
e The period T of the oscillation is the time N takes to move from
B—0—-A—0-B.
e Acceleration is always directed towards O.
« The magnitude of the acceleration is zero at O and maximum at A and B.

e The speed at O is a maximum and zero at A and B.

A 0 B
1 ! I

a= amax ; a= amax
v=0 a;0 v=0
V =V max
Position of N A 0 B
acceleration of N max. 0 max.
speed of N 0 max. 0
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Displacement The variation of displacement from the equilibrium position x with time t of particle N
-Time Graph i Fig. 10.1.2, can be represented by a displacement-time graph.

Ifatt=0, x =+x, (i.e. Nis at B), the motion of N is given by x=x,coswt .

X =X, cos wt

Fig. 10.1.3

Ifatt=0 x =0 (i.e. Nis at O and moving towards B), the motion of N is given by

X=X,Sinwt.
X A
X =X, Sinot
+X0 _____
1
=T
2 ot
0
P ¢, TR S S S N .

Fig. 10.1.4
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Changes in x, Consider the case x = xpatt =0, i.e. N is at point B, displacement is given by
vand a

during S.H.M.
X = X, cos wt (Refer to Fig. 10.1.5)
x varies with t
By calculus, we have e dx
" dt
d
=—(x, cos wt
v varies with t V ==X, Ssin ot (Refer to Fig. 10.1.6)
and
dv
a=—
dt
d :
= E(—xow sinwt)
a varies with t a=-x,0° cos wt (Refer to Fig. 10.1.7)
Also,

V =-X,0Sin ot
=-wX, sin ot

= —a)xo (im)
= +o,/x,? (1-cos’ at)

+

.
V= m,/(x,,2 -x*) (Refer to Fig. 10.1.8)

Il

%

2 2 2
oL = x,? cos® ot)

and

a=-x,0° coswt
=-0"(x, cos wt)

a=-o°x (Refer to Fig. 10.1.9)
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Graphical The following graphs show how the displacement, velocity and acceleration of N in
lllustrations  Fig. 10.1.2 vary with time during two complete cycles.

b x/m .
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1%t quarter of When N is speeding up from B towards O, both v and a are directed towards O (both
cycle negative).

2" quarter of When N is slowing down from O to A, v and a are in opposite directions: v is negative but a
cycle is positive.

3 quarter of When N is speeding up from A towards O, both v and a are directed towards O (both
cycle positive).
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47 quarter of When N is slowing down from O to B, v and a are in opposite directions: v is positive but a is
cycle negative.
The cycle then repeats.

The following graphs show how the velocity and acceleration of N in Fig. 10.1.2
vary with displacement.

{‘vlmS'1

+X,0

v=ta(x}-x?)

=X, @

Fig. 10.1.8

2
aadlms

--------------- +X,0°

a:—CDZX » x/m

Fig. 10.1.9

Fig. 10.1.9 is the graph for the defining equation for SH.M.: a = -0’X
It is the a-t graph for any particle moving in S.H.M.

10
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Example 1 A particle describes S.H.M. in which the displacement is given by
x =0.05cos (4xt)
where x is in metres and ¢ in seconds.
Determine
(a) the amplitude of the motion,
(b) the period of the motion,
(c) the maximum velocity of the particle,
(d) the maximum acceleration of the particle.
Solution: (a) amplitude, xo=0.05m
(b) w=4r = 2z =4r
T
(€) v=1tmx2-x?
Maximum velocity (when x = 0) = +,Xp
= +(47)(0.05) = +0.628 m s~
(d) a=-o"x
Maximum acceleration (when x = £xp) = 4?0
= #(47)2 (0.05) = +7.90 m s2
Example 2

Figures (a) and (b) below show how the displacement x and the acceleration a of a

(J82/11/10) body vary with time when it is oscillating with simple harmonic motion.

2

Figure (a)

Figure (b)
What is the value of 77

- . l
Solution: a=—-o’xX = |amax | = (02X0

2
18=(2£j(2)
T
T=27/2 -209s
18

11
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Free If an object is displaced from its equilibrium position and then released, it oscillates
Oscillations at its natural frequency about the equilibrium position.

A free oscillation occurs when an object oscillates with no resistive and
driving forces acting on it. Its total energy and amplitude remain constant
with time.

S —
Models for  Two common mechanical systems are used to illustrate simple harmonic motion:
S.H.M. spring-mass system and simple pendulum.

Spring-Mass  Horizontal

System Consider a block of mass m attached to the end of a spring of negligible mass and
force constant k, with the block free to move on a horizontal frictionless surface.
When the spring is neither stretched nor compressed it is at its equilibrium position
as shown in Fig. 10.1.10.

I
x=0

Fig. 10.1.10

The block is displaced a distance x to the right in Fig. 10.1.11.

|
F restoring |

Fig. 10.1.11

The restoring force exerted towards the left by the spring on the block is
5 restoring — ~kx

It is the resultant force acting on the block, hence by Newton's 2™ law of motion:
Flesroring =ma

—-kx =ma

Comparing with a=-0’x, | » % and | T =27r\/%

12



@ By comparing
the honizontal and
vertical spring-
mass systems, it
can be concluded
that only the mass
and spnng constant

determine their
motions, i.e. the
period of oscillation
depends only on
these quantities.
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Vertical

A vertically suspended spring of negligible mass and force constant k is stretched
by an amount e when a block of mass m is hung on it and remains at rest at the
equilibrium position. The block is then given an additional downward displacement
y (positive direction downward) and released as shown in Fig. 10.1.12.

Unslretched === p ===l ea
e §
Equilibrium

Fig. 10.1.12

The initial static equilibrium is characterised by a balance between the elastic force
and the weight of the block:

mg =ke . (1

Once the block is pulled down and released, the restoring force is the vector sum of
the forces in the vertical direction.

Z 7:. y =,—:'resron'ng = W + ’—:.spn'ng

Fsping is due to the total extension (e + y) of the spring at this position, i.e.
Fspring = k(€+y).

Taking downwards to be positive,
Fms!on'ng = mg + [_k (e + y)]
By Newton's 2" [aw:

Fresfonng =ma

mg — ke —ky =ma
mg-mg - Ky =ma ; ke=mg from (1)

-ky =ma

Comparing with a = -0’y , and

T=27r\/E
k

13



Simple
Pendulum
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A simple pendulum consists of a bob suspended by a light string. The forces acting
on the bob are the tension T in the string and the weight mg of the bob. When the
bob is displaced by a small angle 8 (<10°), it is displaced by a distance s =L0.

mg, weight
Fig. 10.1.13a

The restoring force is the tangential component of mg:
Frestoring = —Mg Sin 6

E T, tension

Fig. 10.1.13b
Since 6 is very small, by small angle approximation,
$in6~6 and Frpgem, ~ —MJO = —mg{-

By Newton’s 2™ law:

Fleston'ng =ma
_mg S _ - @ The motion
YL of the simple
g pendulum
a= ‘(ZJS depends only on
the length of the

pendulum and
c g g L [C the acceleration
omparing with a=-0°s, | w=,/> | and |T=2x 5 due to gravity.

14
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Example 3  An object of mass 0.20 kg is hung from the lower end of a spring. When the object
is pulled down 5.0 cm below its equilibrium position O and released, it vibrates with
S.H.M. with a period of 2.0 s.

(a) What is the extension of the spring when the mass is hung at rest from the
lower end of the spring?

(b) What is the speed of the mass as it passes through O?

(c) What is the magnitude of its acceleration when it is 2.5 cm above O?

(d) Through what distance will the object move in the first 0.75 s?

Solution:

(a) T=27r\/% = 20=2x ’% = k=1.974=1.97 Nm"

At the equilibrium position,
mg (0.20)(9.81)

— k _mg 2P 5 994m
mg=te = o= 1.074

(b) v, =Xo(o:(5.0><10'2)(%]:0.157 ms’

2
) la|=|-o’x =[%J (25x107?)=0.247 m s?

(d) Taking upwards and displacement above O as positive,

X = —5.0cos(z—ﬁtJ =-5.0cos =t
2.0

When t=0.75s, x=-5.0cos(7(0.75))=3.5¢cm

The object is 3.5 cm above the equilibrium.
Distance moved by the objectin 0.75s =5.0 + 3.5 =8.5cm

15
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Example 4 A horizontal plate is vibrating vertically in S.H.M. at a frequency of 20 Hz. What Is
the maximum amplitude of vibration so that fine sand on the plate always remains
in contact with it?

Solution:
N
A
(\/ sand particle
a ﬂ top of oscillation Sand will lose
contact when
lat plate is above the
mg  PEe equilibrium
| position.

.................... equilibrium position

The restoring force on the sand is the resultant force acting on it. It acts towards the
equilibrium position.

Taking downwards as positive,

For the sand to remain in contact, N >0

N=mg-ma’x>0

mg > ma?x
9
X<(02
= x<—9 = x< 28— 4 000062m
(27f) (27(20))

Hence, the maximum amplitude of vibration is 0.62 mm
for the sand to remain in contact with the plate.

16
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10.2 Energy in Simple Harmonic Motion

S ———
Variation of  For a simple harmonic oscillator, where the system does no work against dissipative
Energy in forces, its total energy remains constant with time.

S.H.M.

Suppose a body of mass m, attached to a light spring, oscillates on a horizontal

frictionless surface about the equilibrium position O:

: |
Ecmstosiog. | frictionless
i m surface
/ X
l .
A O X B
x=0
Fig. 10.2.1

Let us consider this to be an ideal oscillator, which would oscillate forever once it is

set in motion. We are assuming that there is no energy loss as a result of friction or

other resistance to motion.

During the cycle, there is a continual change of kinetic energy to potential energy and

vice-versa. At any instant during the motion, the total energy of the system is equal

to the sum of its kinetic energy and potential energy.
Variation of E varies with x
energy with
distance
from The kinetic energy Ej at a distance x from its equilibrium position is given by
equilibrium >

1
E, =—mv
T2

= %m(iw (x,? - xz))2

E, =5 mo? (17 -x)

where X, is the ampiitude of the motion.

17
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Variation of Ex,
Ep and E with
displacement x
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E; varies with x

The potential energy E; at a displacement x from its equilibrium position is given by

1
Ep =-§kx2

\ k
since w="— = k=mo’
m

Total energy E

The total energy E at displacement x is given by
E=E,+E,

1 1
= Emco2 (x! -x*)+ Emco’x2

E= 1 mwzxoz
2

Note:
E=E

k,max

=E

p,max *

This is because when the body is at x =0 (equilibrium position),
E,=0, hence E, = E is a maximum value. When the body is at x =+x, (maximum
displacement), E, =0, hence E, = E is maximum value.

The following graph in Fig. 10.2.2 shows the variation of Ex, E, and E with
displacement x:

Energy /J

S
&

18
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e s
Z:riation :l: Suppose X =x,coswt and v=-Xx,wsinat , the kinetic energy Ey and potential
timeergy " energy Ep at time t are given by

Kinetic Energy, Ej Potential Energy, Ep
E =1kx2
r2
Ek = EmV 1
1 =§k("o coswt)’
= Em(—xowsin ot)’ 1
1 - kx,? cos® wt
E, = Ema;‘x‘,2 sin’ ot 1
E, = —Z-mwzxoz cos’ wt

Eisconstant At any instant the total eneray, E is given by
with ¢

E=E, +E,

= %mm’ x, sin® wt + %mm’x,’ cos’ ot

E=%mm’x,’

The graph in Fig. 10.24 shows the variation of E, E, and E with time F

19
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Variation of Ex,
Ep and E with

time t /\
o \'T',z'/ . \ ; °/ —"| Fig.10.23

HRVERVERV VYAV
Fig. 10.2.4

@The frequency of the energy variation is twice that of the motion.

20
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Example 5 A mass of 0.50 kg is attached to a light spring which has a force constant of 20 N m"'.

RefertoFig. ~ The mass is displaced a distance 5.0 cm below the equilibrium position and then
10.1.12 released. Calculate

(a) the maximum value of the potential energy of the oscillating system, assuming
it is zero at the equilibrium position.

(b) the maximum velocity of the mass,

(c) the distance from the equilibrium position when the kinetic energy is one
quarter of its maximum value.

Solution:

(a) Method 1 (using energy — displacement model for SHM)

Maximum E, occurs at the amplitude of oscillation. Energy

! .
Since E, = 0 at the equilibrium, E, =Eky2

1 Ep
Ep, MAX — Ekyo2 \\

=%(20)(0.050)2 Fx

=0.025 ~Yo 0 +Y

Method 2 (considering the changes in EPE and GPE)
At the equilibrium, mg = ke

~mg _(0.50)(9.81)
e= T =

=0.24525m

@The value of potential energy E, of the vertical spring mass system depends on

the changes in elastic potential energy (EPE) and gravitational potential energy
(GPE).

At the mass moves from y = 0 to ys, the system experiences an |1\ (Veaye,
inEPEanda _d¢(yonce inGPE.

At y,, the E of the system is a maximum value.

Ep wax = 100ctast in EPE (from y =0to y,)- _dwvenye in GPE (fromy=0toy,)
> 1
:Ek@w.om) —E@J—mg(O-OSO)

= {%(20)(0.24525+ 0.050)" - %(20)(0.24525)2 } —(0.50)(9.81)(0.050)

=0.0251

21
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|Ex. wax| =|Ep, wax| = 0.025 1
1 2
> Mg =0.025
%(o.so)vw2 =0.025
2(0.025
Vivax = (0 =0 ) =40.32ms’
(©)
1
Ey= ZEK, MAX
~mo’ (y,' ~y*)= l(0.025)
1 20 1
=(0.50)| —— |(0.050° - y*)==(0.
o )[o.5oj( )= (0.025)

y=0.043 m

? What does the energy-displacement graph look like for a vertical spring-mass
system? Does it follow the model for SHM? (Refer to tutorial self-practice SP10 for

the energy-displacement graphs)

22
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10.3 Damped and Forced Oscillations, Resonance

The oscillatory motions that have been discussed so far have been for ideal systems.

Damped

Oscillations _
A real oscillating system is opposed by dissipative forces, such as friction and

viscous forces, which cause the amplitude of the motion to decrease with time. The
system then does positive work: the energy to do this work is taken from the energy
of the oscillation, and usually appears as internal energy of the surroundings and the
system. Such oscillations are said to be damped.

Damping is the process whereby energy is removed from an oscillating system.

For a damping force which is proportional to the velocity of the mass, the decay in
amplitude is exponential. This means that the amplitude decreases by the same
fraction during each vibration.

A full mathematical analysis of damped harmonic motion shows that the frequency of
the damped motion is less than the undamped frequency.

Degreesof  The degree of damping depends on the magnitude of the retarding force (or the

Damping amount of resistance to the oscillation). In practice, the motion of an oscillator will
depend on the magnitude of the damping. In certain cases, the damping may prevent
the system from oscillating, and it will just return to its equilibrium position.

The following graphs show how different degrees of damping affect the displacement
of an oscillating body.
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Fig. 10.3.1

Fig. 10.3.2

Fig. 10.3.3

Fig. 10.3.4
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g’“ rles of Light Damping results in oscillations whereby the amplitude decays exponentially
tegorfes of it time. The frequency of oscillations is slightly smaller than the undamped

Kemplog frequency. (Fig. 10.3.2)
Critical Damping results in no oscillation and the system returns to the equilibrium
position in the shortest time. (Fig. 10.3.3)
Heavy Damping results in no oscillation and the system takes a long time to return to
its equilibrium position. (Fig. 10.3.4)
Energy 30
Variation of
Damped
Oscillations _ ‘ : .
Fig. 10.3.5
Light
Damping '
o
3'&'f&l-i'Eh'e}§i:[Ji """"" F o
Critical i
Besiny 5 Fig. 10.3.6
AN TR e mam
Heavy Fig. 10.3.7
Damping
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Importance
of Critical
Damping: Car
Suspension
System

Diagram from
HowStuffWorks
website)

A shock
absorber
consists of a
piston that
moves in a
cylinder
containing a
viscous fluid.
Holes on the
piston allow it to
move up and
downina
damped manner
and the amount
of damping is
adjusted so that
the suspension
system is close
to the condition
of critical
damping.

The oscillation
of the spring of a
car suspension
is critically
damped when it
goes overa
bump; the
passengers in
the car quickly
and smoothly
regain
equilibrium.
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The degree of damping of a mechanical system is important. Too little dgmping
results in a large number of oscillations: too much damping leads to there being too
long a time when the system cannot respond to further disturbances.

This is illustrated well by the trouble which car manufacturers take with the
suspension of cars. The suspension is the link between the wheels and axles of a car
and the body and the passengers, and consists of a spring which is damped by a
shock absorber.

Without the suspension system, the wheels' vertical motion, due to road
imperfections (e.g. a bump), is transferred to the car frame, which moves upwards,
and the tires can lose contact with the road completely. Then, under the downward
force of gravity, the tires can slam back onto the road surface.

The suspension system will absorb the energy of the vertically accelerated wheel,
allowing the frame and body to ride nearly undisturbed while the wheels and tires
follow the bump in the road.

Shock Absorber
and Spring

(e

Steering
ink

Car Frame
Fig. 10.3.8
A good suspension system is one in which the damping is critical or slightly under

critical as this results in a comfortable ride and also leaves the car ready to respond
to further bumps in the road quickly.

Fig. 10.3.9 shows that by the time the car has reached P the shock absorbing system
is ready for the drop in road surface. After Q, it is ready for another bump.

path of point on body of car

expansion F expansion
" compression -~ 1. X2 (disturbance
X= 3 :
- __,‘_d?s_“!’—"”) ~compression_! _ -

Fig. 10.3.9
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Without the shock absorber, a car spring, after a compression, will extend and
release

the energy it absorbs from the rise of a bump at an uncontrolled rate. The spring will
continue to bounce at its natural frequency until all of the energy originally put into it
is used up. A suspension built on springs alone would make for an extremely bouncy
and uncomfortable ride and, depending on the terrain, an uncontrollable car.

A heavily damped shock absorbing system would still have a compressed spring by
the time P is reached and so would not be able to respond to the sudden drop in road
surface. So long as there are bumps on a road then these must have an effect on a
passenger in a car. The shock-absorbing system can only reduce the forces applied.
It cannot eliminate them because, clearly, in the above diagram, the passenger must
rise and drop eventually by the height of the bump.

Instruments such as analogue balances and electrical meters are also designed to be
critically damped so that the pointer comes quickly to the correct position in the
shortest possible time without oscillating.

Forced
Oscillation
and
Resonance

Since all macroscopic mechanical oscillations are damped, energy is continually
being lost from the system. If we wish to maintain the vibrations at constant
amplitude, then energy must be supplied at the rate at which energy is being
dissipated to the surroundings and within the system. A force must therefore be
applied to oppose the damping forces.

Forced oscillations are produced when a body is subjected to a periodic
external driving force and is made to oscillate at the frequency of the driving
force, which may not be its natural frequency.

The device / machine providing this periodic driving force is known as the driver.

Demonstration Using Barton’s Pendulums

Fig. 10.3.10 shows a setup of Barton’s pendulums. It consists of a number of very
light pendulums (made from paper cones) of varying length (A, B, C, D and E) and
one pendulum with a heavy bob (X). All the pendulums are suspended from the same
string. The massive pendulum X, called the driver pendulum, is made to oscillate and
the motion of the rest of the pendulums are observed.

The setup is used to demonstrate what happens when a system is made to vibrate at
some frequency other than its own natural frequency of vibration.

Fig. 10.3.10
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Forced
Oscillations

Resonance

Variation of
Amplitude of
a Forced
Oscillation
with Driving
Frequency
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The motion of the Barton's pendulums can be divided into two distinct sections.
Initially, it is very chaotic; the pendulums tend to oscillate at their own natural
frequency (determined by their length) while the driving pendulum tries to make them
all oscillate at its own frequency. Gradually, the driving pendulum wins and the
pendulums are all forced to oscillate at a frequency which is not the same as their
own natural frequency. Energy is being transferred from the driver pendulum to the
driven pendulums. This is an example of forced oscillations.

The Barton’s pendulums experiment shows that the forced vibrations are at the
maximum when the natural frequency of the driven system is equal to the frequency
of the driving oscillator. Pendulum C, which has the same length and thus has the
same natural frequency as pendulum X, is observed to oscillate with the largest
amplitude. This is an example of resonance. At resonance, maximum energy is being
transferred by way of the string from the driving system (X) to the driven system (C)

Fig. 10.3.11 is a frequency response graph which shows how the amplitude x, of a
forced oscillation depends on the driving frequency f when the system is damped at
different degrees.

(i) No damping
g
N
g (ii) Small damping
&
g (iii) Medium damping
g
&
,§ (iv) Critical damping
£
o
5 (v) Heavy damping
T —>
! ? Driving frequency/Hz
Natural frequendy
Fig. 10.3.11

For a forced oscillation, when conditions are steady, the following observations are
made:

¢ The amplitude of a forced oscillation depends upon:
1. the damping of the system,

2. the relative values of the driving frequency f and the natural frequency f, of
the system (i.e. how far fis from f,).

e The oscillations with largest amplitude (i.e. resonance) occur when f is
approximately equal to fo.

28



Circumstances
in which
resonance is
useful

RAFFLES INSTITUTION
YEAR 5-6 PHYSICS DEPARTMENT

The sharpness of resonance is determined by the degree of damping:

1. When there is no damping, the amplitude of resonance becomes infinite. (Fig.
10.3.11(i)

2. When damping is light, the amplitude is large but falls off rapidly when the
driving frequency of the body differs slightly from the natural frequency of the
body. The resonance is sharp. (Fig. 10.3.11(ii))

3. When the degree of damping increases, the amplitude at resonance
decreases. The curve falls off gradually and maximum amplitude occurs at a
frequency that is lower than the natural frequency of the body. (Fig.
10.3.11(jii))

4. When damping is critical or heavy, the resonance is flat. (Fig. 10.3.11(iv),(v))

Resonance occurs when a system responds at maximum amplitude to an external
driving force. This occurs when the frequency of the driving force is equal to the
natural frequency of the driven system.

Tuning a radio receiver (Electrical resonance)

The electrons in a radio receiving aerial are forced to vibrate by the radio wave
passing the aerial. When we tune the receiver, we are making the natural frequency
of the electrical circuit equal to the frequency of the signal. Hence the tuning circuitry
uses resonance to isolate and amplify the signal of the required frequency.

Increasing the intensity of a note produced by a string in a musical instrument

(Acoustic resonance)

This is done by coupling the vibrating string to a resonator. The air inside a cavity
(e.g. a guitar body) and the material of the instrument (the thin wooden body of the
guitar) all vibrate producing much greater vibrations in the surrounding air than would
be produced by the string alone.

Magnetic resonance

Energy from strong oscillating magnetic fields is used to cause the nuclei of atoms to
oscillate and emit radio frequency signals. In any given molecule there will be many
resonant frequencies, and whenever resonance occurs energy is absorbed. The
pattern of energy absorption can be used to detect the presence of particular
molecules within any specimen and biochemists are using the technique to study
complex molecules and the part they play in biological processes.

Magnetic resonance is also being used instead of X-rays as an imaging system (MRI)
in the medical field. The radio frequency signals emitted are made to encode position
information by varying the magnetic field. The contrast between different tissues is
determined by the rate at which excited atoms return to the equilibrium state. One
major advantage of rnagnetic resonance used in this way is that no ionising radiation
is involved.
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However, resonance is not always useful.

All mechanical structures have one or more natural frequencies, and if a structure is
subjected to a strong external driving force that matches one of these frequencies,

resonance is said to occur and the resulting oscillations of the structure may rupture
it.

At Angers, France in 1850, a French infantry battalion was marching over a
suspension bridge when it collapsed, resulting in the deaths of 220 men. Since that
time, it has been common practice to order soldiers to break step when crossing a
bridge. The soldiers’ marching caused sufficient vibration and twisting to break the
bridge.

A more modern bridge disaster occurred in 1940 when wind-induced oscillations
caused the collapse of the Tacoma Narrows Bridge in the U.S. state of Washington.
The bridge's natural mode of vibration coupled with the wind forces, produced
unstable oscillations with increased amplitude that were beyond the strength of the
suspender cables.

Resonance was also the cause for the collapse of some buildings during a major
earthquake in Mexico in 1985. Many intermediate-height buildings collapsed because
their natural frequency matched that of the seismic waves, whereas taller or shorter
buildings were unaffected.

A more mundane example of resonance is the way in which the bodywork of a bus
can vibrate violently at a particular engine speed.

As such, engineers have to carry out elaborate vibration tests on model structures of,
for example, bridges, buildings and aeroplanes before they are satisfied that the
design features will prevent extremely large amplitudes from building up in the
system.
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USEFUL S.H.M. EQUATIONS

Att=0s X=X, x=0
S——
Displacement w.r.t. time X = X, coswt X = X, sinwt

(given in formulae list)

Velocity w.r.t. time v =-X,wsinot vV = X,ocos ot
=-V, sinot =V, coswt
Acceleration w.rt. time & a =-x,0° cos wt a=-x,0° sinot
displacement 5 ,
; : ==X =-0'X
(defining equation for S.H.M.)
Velocity w.r.t. displacement ve=ia ( x2— xz)
(given in formulae list)
Maximum velocity Vinax = £0X,
Maximum acceleration a,,, =to’X,
Kinetic ene
wr E, = 1o (xo* -x?)
2
Potential energy 1 5.,
(for totai PE. = 0 at Ey= Emw %
equilibrium)
Total energy E=E +E,=E o =E
1 2 1
=5 mo (x0* = x*) +=mw?x?
o me?x,’
2
Period, frequency, angular T 1
frequency 3
®= 2?” = sz
Spring-mass system k
0= [—
m
T=272
k
Simple pendulum g
0=, |=
L
T=2rn =
g
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APPENDIX

Relationship R
between Uniform inear ty v = Xgw
Circular Motion \mww —
and S.H.M.

Point P moves in a circle of radius x, at a steady angular velocity @. N is the
projection of P to the diameter AOB of the circle. As P moves steadily round the
circle, N moves to and fro along AOB.

The centripetal acceleration of P is x,o?, directed towards O.

Assume that t = 0 when 8 = 0 (i.e. t = 0 when x = Xo or when the point N is at B).
After a time f,
6 =ot
X =X, C0s 8 = x,cos ot

The acceleration of N is the component of the acceleration of P parallel to AB:

a=-x,0’cosé
The negative sign indicates that the acceleration is directed towards 0.
We can write

a=-x,0°cosé

= -X,0° cos ot

=-a*(x, cos wt)

=-w’X
Thus N is in S.H.M.

The period of N (time taken for N to go from B to A and back again) is given by
Pl
®

The model shows that when a point moves in a uniform circular motion, the
projection of that point to the diameter of the circle moves in S.H.M.
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s —
Phase Constant

Phase Difference

In general, x = x, cos(at + ¢)

¢ is the phase constant or the initial phase angle.
The phase of the motion is the quantity (wt +¢).

Xo and ¢ are determined uniquely by the position and velocity of the particle at
t=0.E.g.ifthe particle is at x = xpat t =0, then ¢ = 0.

A graph of x = x, cos (ot +¢) is the graph of x, coswt displaced to the left by a

time interval i.
@
The motion described by x = x, cos(wt +¢) is not in phase with that described

4

by x,coswt . It is out of phase by angle ¢ (radian) or time et

¢

[}

The plus sign

indicates that this motion /eads by time
left.

and so the graph is displaced to the

If the motion was described by x = x, cos(wt - ¢), the graph would be displaced

to the right. This motion would be said to /ag by time 2

Z .
Phase difference between two oscillators is the fraction of a complete oscillation

by which one is ahead of the other. It can be expressed as a fraction of an
oscillation, or, more usually, as an angle, measured in radians.
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O —
Example

x,-x,cosld+-;-] X, = X, cos(ef)

x
= ol -—
Xy t,oos[ 3)
—— \

AL /"\\‘
AVIER

X

The motion described by x, = x, cos(wt +§) is not in phase with that described

n/3

by x,=x,cosat . It is out of phase by % radian or time sl The plus sign

7/3

@

indicates that x2 leads x; by time = T/6 and so the graph is displaced to the

left. The motion described by x, = x, cos(wt —%) is the graph of x; displaced to
/3 _

the right. xs is said to /ag x4 by time T/6.

The phase difference ¢ between two waveforms P and Q having the same

period can be calculated using displacement
p -
H ”?\ N
At ¢ : / ': \\ / \\
T 2 AR AR
+ 1y 1 =1 >
2z ; H \ I, x /l
= ¢ = ".,T At H ! \ s \ i
5 At E \ ll \ l’
«—> T I N/
e

e ———

Example

Refer to the graphs in Fig. 10.1.5, Fig. 10.1.6 and Fig. 10.1.7. What are the time
difference and the phase difference between (i) v and x, (ii) v and a, and (jii) a
and x?

Solutior:
(i) The time difference is T/4, the phase difference is 7/2 rad, and v leads x.

(i) The time difference is T/4, the phase difference is #/2 rad, and a leads v.

(iify The time difference is T/2, the phase difference is z rad, and x and a are
in ‘antiphase’.



Tutorial

RAFFLES INSTITUTION
YEAR 5-6 PHYSICS DEPARTMENT

([1] OSCILLATIONS

Self-Check Questions

S1

S2
S3
S4

S5

S6

S7

S8

S9
$10

S11

What do you understand by the terms displacement, amplitude, period, frequency and
angular frequency of a simple harmonic motion?

Express the period T in terms of frequency f and angular frequency .
Define simple harmonic motion. State the defining equation of simple harmonic motion.

Write down a solution for a simple harmonic oscillator which starts its motion from the
equilibrium position. How do you express its velocity and acceleration in terms of time?

Draw graphs to show the changes in displacement, velocity and acceleration with respect to
time of the oscillator in S4.

Draw graphs to show how the velocity and acceleration of the oscillator in S$4 vary with
displacement.

Describe the variation between kinetic and potential energy with time during simple harmonic
motion of a mass attached to a horizontal spring. Assume the mass is moving on a frictionless

surface. What is the frequency of the energy variation as compared with that of the vibration
itself?

Give one practical example of a lightly damped oscillation. Why is critical damping in a car
suspension system important?

What do you understand by forced oscillations and resonance?

Sketch a set of graphs, using the same axes, to show how the amplitude of forced oscillation

varies with driving frequency for very light, moderate and heavy damping. Explain the
features of your graphs.

Describe two examples of resonance, one in which this phenomenon is useful and the other
in which it is a nuisance.
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Self-Practic estions

SP1

SP2

SP3

SP4

A trolley of mass 2 kg with free-running wheels is attached to two fixed points P and Q by two
springs under tension as shown in the figure below.

The trolley is displaced a small distance
(0.05 m) towards Q by a force of 10 N and
is then released. The equation of the
subsequent motion is X = -w?x , where x
is the displacement from the equilibrium
position. What is the constant »??

(Note: velocity = x, acceleration = X)

A 0.25rad?s? D 100 rad?s?
B 1.0rad?s? E 400rad?s?
C 40rad?s? J82/11/9

In which of the following lists are all three quantities constant when a particle moves in
undamped simple harmonic motion?

A acceleration force total energy

B amplitude angular frequency acceleration

C angular frequency acceleration force

D force total energy amplitude

E total energy amplitude angular frequency

J85/1/8 ; J92/1/9

In a fairground shooting game, a gun fires at
a moving target. The gun fires by itself at
random times. The player has to point the gun L |
in a fixed direction, and the target moves from

side to side with simple harmonic motion. ’ I

At which region should the player take a fixed 1
aim in order to score the greatest number of
hits?

A 3 C either2or4
B either1or5 D anyof1,2,3,4and5

J90/I/11 ; N95/I/9

The diagram shows the graph of displacement
displacement against time for a body
performing simple harmonic motion. c D

At which point are the velocity and
acceleration in opposite directions? 0 -

N90/1/11 ; N98/I/9

B N9O/I/1 1; N9S/I9
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SP§ Thebobofa simple pendulum of period 2 s is given a small displacement and then released at
time t=0.

Which diagram shows the variations with time of the bob’s kinetic energy Ex and its potential
energy E,?

energy | .-~ s Ek

energy | .. 5

Iy . RS R
energy F~_ o=~

> . . N92/I/9
N ’ JEk

0 1 2 s

SP6 Amass hanging from a spring suspended from 100
a ceiling is pulled down and released. The
mass then oscillates vertically with simple "m&’:"
harmonic motion of period T. The graph shows
how its distance from the ceiling varies with
time t.

What can be deduced from this graph? 30

A The amplitude of the oscillation is 70 cm.

B The kinetic energy is a maximum at ¢t = %

C The restoring force on the mass increases between =0 and t=%

D The speed is a maximum at t = %

J2000/1/9

SP7 Two objects P and Q are given the same intial displacement and are then released. The graphs
show the variation with time t of their displacements x.

P Q
X X

0\ /\ /\ /\ O‘L e e
6’)\/ V V Ut ol t
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P and Q are then subjected to driving forces of the same constant amplitude and of variable
frequency f.

Which graph represents the variation with f of the amplitudes A of P and of Q?

J86/1/8 ; N93//7 ; J99/I/9

SP8 The displacement of a particle P which moves with simple harmonic motion can be described
by the expression

x =(0.05) sin 8nt
where x is in metres and t in seconds.

(a) What is the amplitude of the motion?
(b) What is the frequency of the motion?
(c) How long does it take for the particle to complete one oscillation?

(d) What is the velocity of the particle as it passes through its equilibrium position, and at the
extreme end of the swing?

(e) What is the maximum acceleration of the particle during its motion?

Another particle Q also moves with simple harmonic motion of the same frequency. However,
the motion of Q /ags that of P by /2 rad and the amplitude of Q is twice that of P.

Draw, using the same axes, the displacement-time graphs for motions of P and Q.
Write an equation to describe how the displacement of Q varies with time.

SP9 A light spring stretches 0.150 m when a 0.300 kg mass is hung from its lower end. The mass is
pulled down 0.100 m below this equilibrium point and released. Determine

(a) the spring constant, [1]
(b) the amplitude of the oscillation, 1]
(c) the maximum velocity, [1]
(d) the magnitude of velocity when the mass is 0.050 m from equilibrium, 1]
(e) the magnitude of the maximum acceleration of the mass. 1]

SP10 Discuss the energy changes which take place when a mass suspended from a spring is pulled
downwards and released, such that it oscillates vertically.
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Discussion Questions

D1

D2

(a)

(b)

[N96/11/2]

A vertical peg is fixed to the rim
of a horizontal turntable of radius
r, rotating with a constant angular
speed o as shown in the figure.

[J95AII/3 part] .
In one harbour, the equation for the depth h of water is

. 2nt
h=5.0+3.0sin 245600

where h is given in metres and t is the time in seconds.
is in radians.) For this harbour, calculate

2rt
I
(The angle 25600
() the maximum depth of water, [1]

(i) the minimum depth of water, (1]
(iii) the time interval between high- and low-water, [2]
(iv) two values of t at which the water is 5.0 m deep, [2]

(v) the length of time for each tide during which the depth of water is more than
7.0m. _ 4]

[Jo1/1/9]

depth

The rise and fall of water in a harbour is simple harmonic. The depth varies between

1.0 m at low tide and 3.0 m at high tide. The time between successive low tides is

12 hours.

A boat which requires a minimum depth of water of 1.5 m, approaches the harbour

at low tide. How long will the boat have to wait before entering? [2]

screen

M

Parallel light is incident on the turntable so that the shadow of the peg is observed on a screen
which is normal to the incident light. At time t = 0, 8 = 0 and the shadow of the peg is seen at
S. At some later time t, the shadow is seen at T.

5
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(@) () Write down an expression for 8in terms of @ and t. (1
(i) Derive an expression for the distance ST in terms of 7, @ and t. (1
(b) By reference to your answer to (a)(ii), describe the motion executed by the shadow
on the screen. (1]
(¢) The tumtable has a radius r of 20 cm and an angular speed o of 3.5 rad s, Calculate,
for the motion of the shadow on the screen,
(i) the amplitude, [1]
(ii) the period, (1]
(iii) the speed of the shadow as it passes through S, (2]
(iv) the magnitude of the acceleration of the shadow when the shadow is
instantaneously at rest. (2]
[NO3/1/4)
(@) Define simple harmonic motion. : (2]
(b) A horizontal metre rule is clamped at one end. The free end oscillates vertically as shown

in Fig. 3.1
metre rule

weight
clamp/.N}

Fig. 3.1

Filg. 3.2 shows the variation with time t of the velocity v of a point at the free end of the
rule.

40

1@ Ll 0 i B Ingaen
I 18 guBu
sundin asensennnessa; it Ssssen:
2 ™~ . "
viems' 3.0 ; _— ; <
HiH T H i aaras e n :
33 t runs Lly I A + L8
G
-/ ,
2.0 fHHH : -
1 v
1 ™1 t T ,
L \BEES 881 Tt t ! ?
1.0 R H : s gu sasse
= 7 *indnanes
. 1%0.5 ST 1.0 T 1.5 20254301
‘ll 1 +Té 1' : { 1 ‘BL '
! l i i
1 . ! .. A S a T T
-1.0 31 ] T MESSENESRSS A I
*1 zauns 1 38,1851 i, t
-20¢ sasas xi T v 2
%1 ?\"’1*"%.,1; T it I 1!
30 - : - :
4>~0‘ -
SSiat i
-".0 1 1 1L
Fig. 3.2

(i) OnFig. 3.2, shade an area that represents the amplitude of the oscillations of
the free end of the rule. (1]

(ii) Determine, for these oscillations,
1. the frequency,
2. the amplitude. [4]
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(iii) On the axes of Fig. 3.3, sketch a graph to show the variation with
displacement d of the velocity v of the end of the rule. Mark a scale on the d-

axis. (2]
eempragagpe el 'l suna: 1 S
1 HHoviems I wsssE
A : =
T I 1
2(
i
= esaes dlem ]
F 1 =
ll:i 1 1:1 }{ \
- . n : 13
| emw ! 1 1 | W)
888 1] 1 Y 113
 EBSERNRN 113 : 111
— -3.0
Eazaassass rmal 1
(l_' : : % 1 V]
Fig. 3.3
A tray, holding an empty cup, is moved
horizontally back and forth in simple Cup
harmonic motion. At one instant of time,
the tray is displaced to the right of the Tra)Ll X
equilibrium position (x = 0) as indicated [ —

by the arrow shown in the figure below.

x=0
(a) Draw the frictional force F acting on the cup for the instant of time shown.

(b) Write an equation for F in terms of the mass m of the cup, the angular frequency o
of the motion, and the displacement x of the tray.

(c) Given that the maximum value of F is half the weight of the cup, explain why the
cup will be observed to slip if the frequency of oscillation increases beyond a certain
value.

(d) Ifthe amplitude of the motion is 0.050 m, calculate the maximum possible frequency
such that the cup does not slip.

(1]

(1]

(2]

(2]
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D5  An object undergoing simple harmonic motion has displacement y, as shown. o
Use the graph to determine the amplitude, period and angular frequency of this oscillation.

displacement, y / m

0.15

0.10

0.05 /' \ /F

0.00 » | time/s

olo| [\[ 2lol/[ | l2lol\l | |& 4 0 ol | {/|7lo] | | lelo

- N M N A A{ ﬂ /

-0.10

-0.15
State, for each of the following, a time at which the oscillating object has
(a) maximum positive velocity, [1]
(b) maximum positive acceleration, [1]
(c) maximum negative acceleration, 1
(d) maximum kinetic energy, [1]
(e) maximum potential energy. [1]
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The figure shows the variation with displacement x of the acceleration a of a particle P attached
to the cone of a loudspeaker.

(a)

(b)

(a)

Use the figure to
(i) explain why the motion of particle P is simple harmonic, [2]
(i) show that the frequency of oscillations of particle P is 460 Hz. [2]
(i) The magnitude of the gradient of the line in the figure is G. Show that, for a

particle of mass m oscillating with amplitude A, its maximum kinetic energy

b o 1 2

Ewmaxis given by E,,,, = EmGA . 3]
(i) Determine Euax for particle P of mass 2.5 x 103 kg. [2]
An object undergoes simple harmonic motion with an amplitude of 0.30 cm. The graph

shows the variation of its potential energy Ep with time t.

EplJ
£

1.0 -==7~g-==== === ==

0

0 010 020 030 040 t/s

What is the maximum acceleration and mass of the object? [4]
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(b) [N16/M/8 part] . o
A longitudinal sound wave is travelling through a gas causing oscillations of gas
molecules that are simple harmonic.

()  The gas molecules, each of mass 5.3x10 kg, are vibrating at a frequency of

835 Hz and have an amplitude of vibration of 610 nm. _
The variation with time ¢ of the vibrational kinetic energy Ex of a molecule is shown
in the figure below.

&}

Enex-

0 B
4 L t

Determine, for one vibrating molecule,

1. the period T of the vibrations, [2]
2. the time interval (t, -t,), (1]
3. the maximum speed Vmax, [2]
4. the maximum vibrational kinetic energy Emax. [2]

(ii) By reference to the speed of sound in a gas at room temperature, comment
on your answer in (i)3. [2]
(Given: speed of sound in gas at room temperature is 340 m s™.)

D8  [N13/lI/7 part]
(a) A tube, sealed at one end, has a uniform area of cross-section A. Some sand is placed
in the tube so that it floats upright in a liquid of density p, as shown in Fig. 8.1.

TR ::;; ‘h.:.z;,; i
FHEEL \.. -,;:g?}ii“" "ﬁ?*' ;

STl

3

The total mass of the tube and the sand is m.
The tube floats with its base a distance h below the surface of the liquid.

Derive an expression relating mto h, A and p. Explain your working. [3]

10
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(b) The tube in (a) is displaced vertically and then released. .
For a displacement x, the acceleration a of the tube is given by the expression

a= _(_[lA_g_) X
m
where g is the acceleration of free fall.
conclusion that the tube is performing

()  Explain why the expression leads to the
simple harmonic motion. (3]

(i) The tube has total mass m of 32 g and the area A of its cross-section is
4.2 cm?. It is floating in liquid of density p of 1.0x10° kgm™.

Show that the frequency of oscillation of the tube is 1.8 Hz. (3]

(c) The tube in (a) is now placed in a different liquid.

The tube oscillates vertically. The variation with time t of the vertical displacement x of
the tube is shown in Fig. 8.2.

+20

x/cm

+1.0

-1.0

Fig. 8.2

(i) UseFig.82to

1. determine the frequency of oscillation of the tube, [2]
2. calculate the density of the liquid. 2]

(i) 1. Suggesttwo reasons why the amplitude of the oscillation decreases with

time.
. 2
2. Calculate the decrease in energy of the oscillation during the first 1.0 s. {3}

1"
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[y9711/2) '
Fig. 9.1 illustrates a mass which can be made to vibrate vertically between twp springs.
The vibrator itself has constant amplitude. As the frequency is varied, the amplitude of vibration
of the mass is seen to change as shown in Fig. 9.2.

amplitude of
s //7( \\
/// N\
aN N\
74 vk
0 s 10 15 20
frequency/ Hz
Fig. 9.2
(a) Name the phenomenon which is illustrated in Fig. 9.2. (1]
(b) Forthe mass vibrating at maximum amplitude, calculate
(i) the angular frequency, (2]
(ii) the period. [2]

(c) Alight piece of card is fixed to the mass with its plane horizontal. On Fig. 9.2, draw
a line to show the variation with frequency of the amplitude of vibration of the mass.  [2]

(d) State one situation in which the phenomenon illustrated in Fig. 9.2 is used to
advantage. 1

[N94/11/2]

A block of wood of mass m floats in still water as shown in the
figure. When the block is pushed down into the water, without -:-:-
totally submerging it, and is then released, it bobs up and downin --:-
the water with a frequency f given by the expression:

1 (28

O,

2z \'m
where fis measured in Hz and m in kg.

Surface water waves of speed 0.90 m s~ and wavelength 0.30 m e

are then incident on the block. These cause resonance in the up- ... s
and-down motion of the block.

(a) Explain what is meant by the term resonance. 2]

(b) Calculate
(i) the frequency of the water waves, [1]
(ii)  the mass of the block. 2]

(c) Describe and explain what happens to the amplitude of the vertical oscillations of the block
after the following changes are made independently:

(i)  water waves of larger amplitude are incident on the block, [2]
(ii) the distance between the wave crests increases, [2]
(iii) the block has absorbed some water. [2]

Note: for a wave, v = fA where v is the speed, fis the frequency and A is the wavelength
12
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Challenging Questions

C1 The figure below shows an isolated oscillatory ., m;
system. Two bodies of mass m, and m, are
joined by a light spiral spring. Each body
oscillates along the axis of the spring, which
obeys Hooke's law in both extension and
compression. Y .
(a) The bodies move in opposite directions and the centre of mass of the system is stationary.
Explain why the periods of oscillations of both bodies are the same. ‘
(b) Show that when the body on the left moves through a distance x, the change in length of
the spring is:
X (1 - —"—"—)
m2
(c) Hence, show that its period of oscillation is given by
mm
y gD D AL i
i (m, +m,)k
where k is the spring constant of the spring.

C2 Two masses slide on a frictionless table. Mass ms, but not my, is fastened to a spring. If now m:
and m. are pushed to the left so that the spring is compressed a distance X, show that the
amplitude of the oscillation of m1 after the spring system is X i .

N m,+m,
Answers
D1 (a)(i) 8.0 m (ii) 2.0 m (iii) 22800 s (iv) 0, 22800 s, 45600 s (v) 12200 s
(b) 2.0 hours

D2  (c)(i) 20 cm (ii) 1.80 s (iii) 0.700 m s (iv) 245 m s

D3  (b)(ii) 1. 0.6667 Hz 2. 0.72 cm

D4 (d)1.58Hz

D5 (a)1.35s,3.155,495s

(b) 0.90s,2.70s,4.50 s
(c)0.00s,1.80s,360s
(d)0.45s,1.35s,2.255,3.155,4.055,4.95s
(e)0.005s,0.90s, 1.80s,2.705s,3.60s,4.50 s
D6  (b)(ii) 1.7 x 102 J
D7 (a)0.74 m s, 900 kg
(b)(i)1. 1.20x10° s 2. 5.99x10* s 3. 3.20x10° ms™ 4. 2.71x10™" J

D8 (c)i)1.2.0Hz 2. 1.23x10° kgm™ (ii) 2. 3.86x10™* J

D9 (b)(i) 78.5 rad s (ii) 0.0800 s

D10 (b)(i) 3.0 Hz (ii) 0.079 kg

13
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Tutorial 10 Oscillations Suggested Solutions

S1

S2

S3

S4

S5

displacement, x — distance in a specific direction from the equilibrium position
amplitude, X, — the magnitude of maximum displacement from equilibrium position
period, T - time taken to complete one oscillation

frequency, f— number of oscillations per unit time

angular frequency, o — rate of change of phase angle, it is equal to the product of 2r and
frequency

2z
@

oy
f

Simple harmonic motion is defined as the motion of a particle about a fixed point such that
its acceleration is proportional to its displacement from the fixed point and is always directed
towards the point.

The defining equation is a=-w’x

X = X, Sin ot
v = x,0cos ot = v,coswt , where v, = x,» is the maximum velocity
a=-x,0°sinot = -a, sinot,, where a, = x,0* is the maximum acceleration

S e 7\
AN | e L

—8o

¥ /\ /
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S6

v a

+Vo +a

1 .
7 N | T
-X\ ! ' /"'Xo =ao

:v:‘/

S7

Ex Z
A AWEWAWIWAWAY/
SN
.
PALALS

There is a continual change of energy from kinetic energy Ex to potential energy Ep and vice-
versa. Ex is greatest and Ep is zero as the mass passes through the equilibrium position.

As the mass approaches the endpoints, its Ex decreases (Ep increases).
As the mass approaches the equilibrium point, its Ex increases (Ep decreases).

The frequency of energy variation is twice that of the oscillation itself.
(At any instant during the motion, the total energy E of the system is constant and equal to

the sum of Ex and Ep. Note that E = %ma;zx,,z = %m(an )’ x,2, is proportional to X2 or f2.)

15
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S8 A swinging pendulum or vibrating tuning fork are examples of lightly damped oscillations.

The suspension system of a car includes shock absorbers and springs. When.a car goes
over a bump, the springs will be displaced from their equilibrium lengths. The viscous oil in
the shock absorbers provide damping to enable the springs to smoothly anq.quickly return
to their equilibrium lengths without oscillating up and down. The springs are critically damped.
This will reduce the discomfort of the passengers. Without critical damping, the body of the
car will oscillate up and down after going over a bump, which is undesirable.

(Refer to lecture notes on the car suspension system.)

S9  Forced oscillations are produced when a body is subjected to a periodic external driving
force.

Resonance occurs when a system responds at maximum amplitude to an external driving
force. This occurs when the frequency of the driving force is equal to the natural frequency

of the driven system.
$10 Amplitude
Alm 4 :
8 light _ :
damping ,v'
7 o ¥ ;
resonance v |
: T a
% N moderate |
" s, \damping |
TR L
4 = ~ .
heavy : \

; I
\ :
2 )
. :

0 T v v ™ v v - —>

(1] 0.1 0.2 0.3 0.4 0.5\ 0.6 0.7 08 0.9 1
fo f 1 HzZ

When conditions are steady, the amplitude of a forced oscillation depends upon the damping
of the system and the relative values of the driving frequency f and the natural frequency f,

of the system. Oscillations with the largest amplitude (i.e. resonance) occur when f is
approximately equal to f,.

The sharpness of resonance is determined by the degree of damping.

When damping is light, the amplitude is large but falls off rapidly when the driving frequency
of the body differs slightly from the natural frequency of the body. The resonance is sharp.

When damping is moderate, the amplitude at resonance decreases. The curve falls off

gradually and maximum amplitude occurs at a frequency that is lower than the natural
frequency of the body.

When damping is heavy, the resonance is flat.

S11 Refer to lecture notes on circumstances in which resonance is useful or should be avoided.

16
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Trolley is performing S.H.M. since itis given that its acceleration, a=X =-o°X
At maximum displacement xo,
8nax = fom
m
o2 oo~ 19 _400 rad?s?
mx, 2(0.05)
Answer: D
In an undamped S.H.M., total energy of the oscillating system is a constant though kinetic
and potential energies are constantly being transformed from one form to the other.
Since total energy and maximum energy is constant, amplitude is also constant.
Period of the oscillation is also constant, hence angular frequency is also constant.
Answer: E
Player should aim at the regions where the moving target is moving the slowest i.e. at the
extreme ends of the S.H.M. (Target is momentarily stationary at the amplitude of the
oscillation.)
Answer: B
At point C, the body’s velocity is positive (gradient positive) and since its displacement
positive, its acceleration is negative (a = —a?x).
Answer: C
At t = 0, kinetic energy of the bob is zero and potential energy is maximum. This will happen
again att=1sand t=2s whenthe bob is at the points of maximum displacement.
Hence the frequency of the energy variations is twice that of the oscillation itself (i.e. the
period of the energy variations is half that of the oscillation itself).
Answer: A
From ¢ = 0 to t = T/4 (a quarter through its oscillation), the speed of the mass increases from
zero to a maximum at the equilibrium position and acceleration/restoring force decreases
from a maximum to zero. The amplitude is thus (100 -30) / 2 = 35 cm.
At t = T/2, the mass is at its maximum displacement from the equilibrium position. It is
momentarily at rest. So speed and kinetic energy is zero.
Answer: D
P experiences a smalle( damping force than Q because Q comes to rest in a shorter time.
Hence under forced oscillations, P should exhibit larger amplitudes and a larger resonance
frequency.
Answer: C
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SP8 Compare x = (0.05) sin 8rt with x = X, Sin &t.

(a)
(b)
(c)
(d)

(e)

SP9 (a)

(b)

(c)

(d)

(e)

amplitude, x,= 0.05 m
frequency, f=w/2n=8n/2n=4Hz
period, T= 1/f=%s=025s

velocity of the particle as it passes through its equilibrium position,
Vol = @Xo

= (87)(0.05 m)

=1.26ms™;
velocity of the particle at the extreme end of the swing =0 m s™

maximum acceleration of the particle during its motion,
|ao| = wVo

= (8n)(8 n)(0.05 m)

=31.6ms™

X X (0.05) sin 8nt

0.1

0.1

oos LU LI UL /
o)/ N \2 // o/ \\‘“ 5/ :\\ <4
» \ / / \\\ / \
TN /

x_=(0.1) sin (8nt - n/2

—Particle P
—Particle Q

| | |
11 Al |
i 21/

mg = ke = (0.300)(9.81) = k(0.150) = k =19.6 N m”
¥, =0.100m

V,=Y,0=Y, (\/—g] =(0.100)( %%3—} 0.808 ms™

v=o|(y-v) =,/16_“%\@1oo’ -0.050%) =0.700 m s™

a,= y,0° =(0.100)(%%%) =6.54 ms?
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SP10 Assume that the spring is not compressed during the oscillation of the mass, i.e. the mass is
not pulled down a distance which is more than the equilibrium extension.
ITake the lowest position of the oscillating mass to be the zero gravitational potential energy
evel.
At the lowest position of the oscillation, the gravitational potential energy and kinetic energy of
the system is at a minimum while its elastic potential energy is at a maximum.
As the mass moves upwards, elastic potential energy is converted into gravitational potential
energy and kinetic energy.
When the mass is at the centre of its oscillation, the system has maximum kinetic energy.
As it continues to move upwards, kinetic and elastic potential energy of the system is converted
into gravitational potential energy.
At the highest position of the oscillation, the system has the highest gravitational potential
energy, lowest elastic potential energy and zero kinetic energy.

The interchange between these three forms of energy continues as the mass oscillates but
there will be energy lost in the form of internal energy due to air resistance.

Assuming the spring is displaced ; {2
elastically by a distance equal to : i)
the equilibrium extension, the : Total energy :
following graph showing the |- QN &
variaton of energies with
displacement will be obtained.

eqgm position amplitude
(Refer to notes Example 5) AE
If the spring is displaced
elastically by a distanceequalto  _________________ 2mgxo
the equilibrium extension and the ' \_EPE
zero level for gravitational :
potential energy is taken to be E
midway between the un- ! 1/2mgxo Total Energy
stretched and  equilibrium :>Q :
positions instead, the following ; P S——
3 . -Xo! 0 Xo

graph will be obtained. A

: -1/2mgxo

' -3/2mgxo
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