

YISHUN INNOVA JUNIOR COLLEGE JC 2 PRELIMINARY EXAMINATION

CANDIDATE NAME		
CLASS	DATE	

H2 CHEMISTRY

Paper 4 Practical Paper

22 August 2023

9729/04

2 hours 30 minutes

Candidates answer on question paper. No Additional Materials are required

READ THESE INSTRUCTIONS FIRST

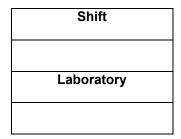
Write your name and class in the spaces at the top of this page.

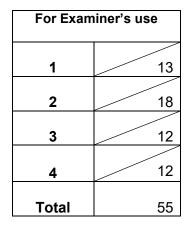
Give details of the practical shift and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer **all** questions in the spaces provided on the Question Paper.


The use of an approved scientific calculator is expected, where appropriate.


You may lose marks if you do not show your working or if you do not use appropriate units.

Qualitative Analysis Notes are printed on pages 19 and 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

2

Answer **all** the questions in the spaces provided.

1 Determination of enthalpy change of reaction

FA 1 is solid sodium hydrogencarbonate, NaHCO₃. **FA 2** is 2.00 mol dm⁻³ hydrochloric acid, HC*l*.

equation 1 NaHCO₃(s) + HCl(aq) \rightarrow NaCl(aq) + H₂O(I) + CO₂(g) $\Delta H_r(NaHCO_3(s))$

The molar enthalpy change of reaction of solid sodium hydrogencarbonate with hydrochloric acid in equation 1 is the enthalpy change when one mole of solid sodium hydrogencarbonate reacts with excess hydrochloric acid.

equation 2 $Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g) \Delta H_r(Na_2CO_3(s))$

The molar enthalpy change of reaction of sodium carbonate with hydrochloric acid in equation 2 is the enthalpy change when one mole of sodium carbonate reacts with excess hydrochloric acid.

You are to perform an experiment by which you will determine the enthalpy change ΔH_r (NaHCO-₃(s)). You will also determine the enthalpy change ΔH_r (Na₂CO₃(s)) using the data provided. You will then use your results in a Hess' Law calculation to determine the enthalpy change, ΔH , for the reaction of sodium carbonate, Na₂CO₃, with water and carbon dioxide to form sodium hydrogencarbonate, NaHCO₃, as shown in equation 3.

equation 3
$$Na_2CO_3(s) + H_2O(l) + CO_2(g) \rightarrow 2NaHCO_3(s) \Delta H$$

(a) Follow the instructions below to determine the maximum temperature change when a known mass of solid sodium hydrogencarbonate, **FA 1**, reacts with hydrochloric acid.

In an appropriate format in the space provided below, record

- all weighings to an appropriate level of precision,
- all values of temperature to an appropriate level of precision.

Procedure

- 1. Weigh the capped bottle containing **FA 1**.
- 2. Place one polystyrene cup inside a second polystyrene cup. Place these in a glass beaker to prevent them from tipping over.
- 3. Use a measuring cylinder to transfer 25.0 cm³ of the acid, **FA 2**, into the first polystyrene cup.
- 4. Stir the solution in the cup with the thermometer. Read and record its temperature.
- 5. Transfer all the **FA 1** to the polystyrene cup. Stir the mixture.

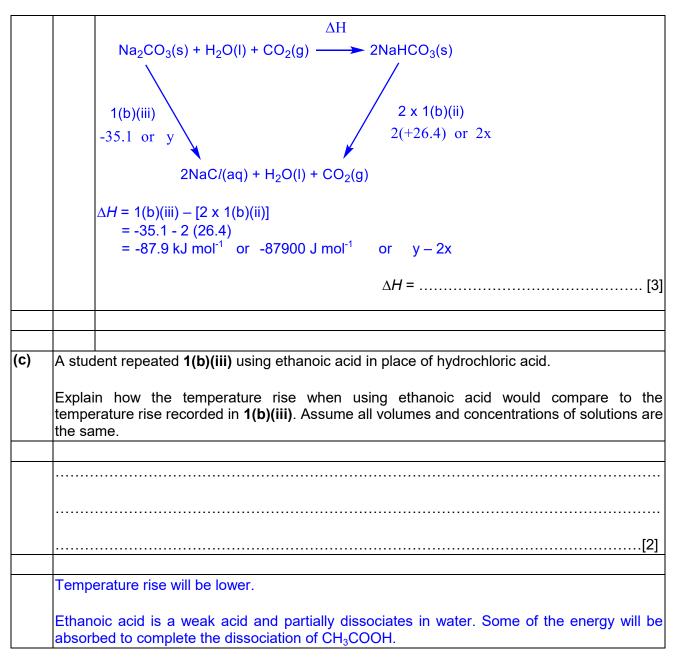
Note: This reaction is very vigorous. Be careful when you pour in the solid. Minimise inhalation of gas produced.

6. Continue to stir the mixture. Observe the temperature and record the value that shows

the maximum change from the initial temperature.

7. Reweigh the empty bottle and its cap.

Determine the maximum temperature change and the mass of **FA1** used.


mass of capped bottle and FA 1 / g	7.868
mass of capped bottle and residual FA 1 / g	5.408
mass of FA 1 used / g	2.460

initial temperature / °C	31.6
lowest temperature reached / °C	24.2
decrease in temperature / maximum change in temperature / °C	7.4

[4]

(b)		e following calculations, you should assume that the specific heat capacity of the solution $18 \text{ J g}^{-1} \text{ K}^{-1}$, and the density of the solution is 1.00 g cm ⁻³ .
	(i)	Use your results from 1(a) to calculate the heat change for your experiment.
		Heat change $(q_1) = mc\Delta T$ = (25 x 1.00) x 4.18 x (7.4) = 773.3 J
		= 773 J or 0.773 kJ
		Heat change =[1
	(ii)	Hence, determine a value for $\Delta H_r(NaHCO_3(s))$.
		Include the sign of $\Delta H_r(NaHCO_3(s))$ in your answer.
		[A _r : H, 1.0; C, 12.0; O, 16.0; Na, 23.0]
		$n(NaHCO_3) = 2.460 \div 84$ = 0.029286 mol
		$\Delta H_{\rm r}({\sf NaHCO}_3({\sf s})) = + ({\sf q}_1) \div {\sf n}({\sf NaHCO}_3)$ = + 773.3 ÷ 0.029286 = + 26405 J mol ⁻¹
		$= + 26400 \text{ J mol}^{-1} \text{ or } + 26.4 \text{ kJ mol}^{-1}$

	$\Delta H_{\rm r}({\rm NaHCO}_{\rm 3}({\rm s})) = \dots$					
(iii)	The results of an experiment where sodium carbonate, Na ₂ CO ₃ (s), was recompletely with an excess of dilute hydrochloric acid, FA 2 , are shown in Table 1.					
	Table 1.1					
	mass of Na ₂ CO ₃ (s) used / g 5.235					
	volume of FA 2 used / cm^3 50.0					
	initial temperature of FA 2 / °C 33.5					
	maximum temperature reached / °C 41.8					
	Use the results given in Table 1.1 to calculate a value for $\Delta H_r(Na_2CO_3(s))$.					
	[A _r : C, 12.0; O, 16.0; Na, 23.0]					
	Heat change (q₂) = mc∆T = (50) x 1.00 x 4.18 x (41.8 – 33.5) = 1734.7 J					
	n(Na ₂ CO ₃ (s)) = 5.235 ÷ 106 = 0.049387 mol					
	$\Delta H_{\rm r}({\rm Na}_{2}{\rm CO}_{3}({\rm s})) = -(1734.7) \div (0.049387)$ = -35125 J mol ⁻¹					
	$= -35100 \text{ J mol}^{-1} \text{ or } -35.1 \text{ kJ mol}^{-1}$					
	$\Delta H_{\rm r}({\rm Na}_2{\rm CO}_3({\rm s})) = \dots$					
(iv)	Use your answers from 1(b)(ii) and 1(b)(iii) and the equations 1 and 2 to determine on the termine of the following reaction, ΔH . Show your working clearly.					
	$Na_2CO_3(s) + H_2O(l) + CO_2(g) \rightarrow 2NaHCO_3(s) $ ΔH					
	If you are not able to determine a value for $1(b)(ii)$ and/or $1(b)(iii)$, you may use x to represent the respective enthalpy changes and proceed with this part of					

[Total:13]

2 Investigation of the kinetics of an acid-catalysed reaction between propanone and iodine

FA 2 is 2.00 mol dm⁻³ hydrochloric acid, HC*l* FA 3 is 0.0100 mol dm⁻³ sodium thiosulfate, Na₂S₂O₃ FA 4 is aqueous iodine, I₂ FA 5 is 1.50 mol dm⁻³ propanone, CH₃COCH₃ FA 6 is 0.50 mol dm⁻³ sodium hydrogen carbonate, NaHCO₃

You are also provided with a starch indicator.

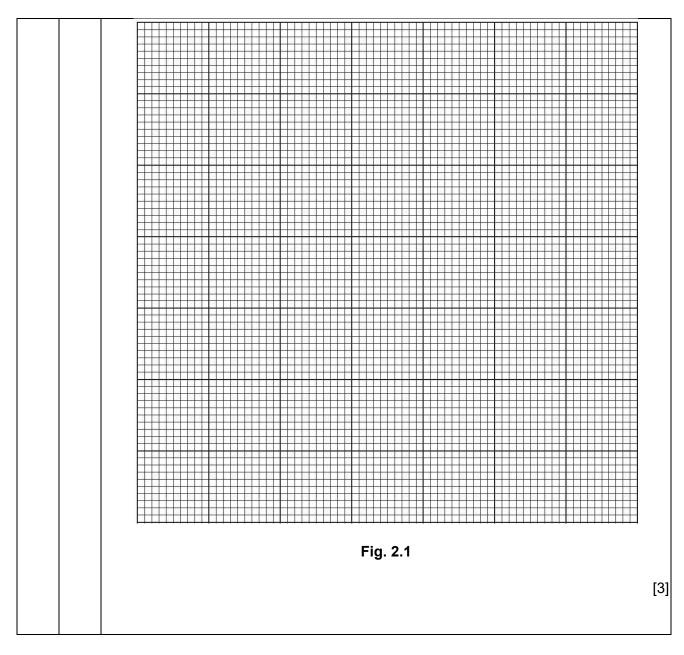
The iodination of propanone to form iodopropanone proceeds as shown in the equation below. This reaction is catalysed by hydrogen ions. ©YIJC

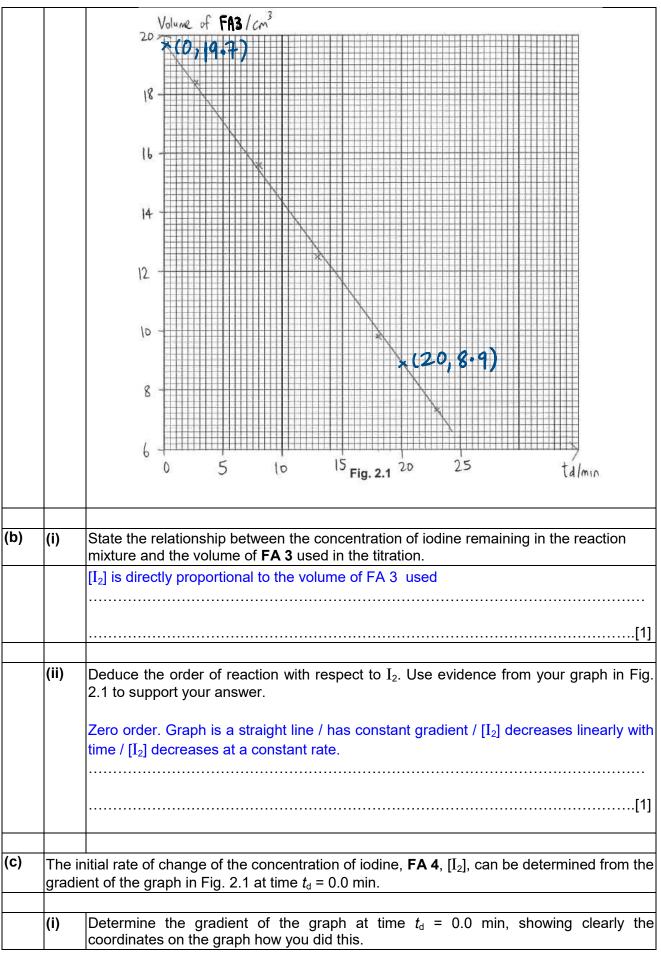
equation 4
$$CH_3COCH_3(aq) + I_2(aq) \xrightarrow{H^+} CH_3COCH_2I(aq) + HI(aq)$$

This reaction is first order with respect to both CH_3COCH_3 and H^+ ions.

You are to investigate the order of reaction with respect to I_2 .

A reaction mixture containing **FA 2**, **FA 4** and **FA 5** is first prepared. At different chosen times, aliquots (portions) of this reaction mixture are removed and added to excess **FA 6**.


It is necessary that you titrate each aliquot against **FA 3** before transferring the next aliquot. I_2 and $S_2O_3^{2-}$ react as shown in equation 5.


equation 5 $2S_2O_3^{2-}(aq) + I_2(aq) \longrightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$

The required order of reaction can be obtained by graphical analysis of your results.

(a)	(i)	Preparation and titration of the reaction mixture
		Notes:
		Please cap FA 4 and FA 5 after use.
		• You will perform each titration once only. Great care must be taken that you do not overshoot the end-point.
		• Once you have started the stopwatch, it must continue running for the duration of the experiment. You must not stop it until you have finished this experiment.
		• You should aim to transfer your first aliquot within the first three minutes of starting the reaction.
		• You should aim not to exceed a maximum reaction time of 25 minutes for this experiment.
		In an appropriate format in the space provided, prepare a table in which to record for each aliquot
		 the time of transfer, <i>t</i>, in minutes and seconds, the decimal time, <i>t</i>_d, in minutes, to 0.1min, for example, if <i>t</i> = 3min 11s then
		$t_{\rm d}$ = 3 min + 11/60 min = 3.2 min,
		 the burette readings and the volume of FA 3 added.
		1. Fill a burette with FA 3 .
		 Using measuring cylinders, add 50.0 cm³ of FA 4 and 25.0 cm³ of FA 2 to the conical flask labelled reaction mixture.
		3. Using a measuring cylinder, add 25.0 cm ³ of FA 5 to the same conical flask. Start the stopwatch. Swirl the mixture thoroughly to mix its contents.
		4. Using a measuring cylinder, add 20.0 cm ³ of FA 6 to a second conical flask.
		5. Transfer a 10.0 cm ³ aliquot (portion) of the reaction mixture to a 10 cm ³ measuring cylinder, using a dropping pipette.

	0,		aliquot into the o Read and record ond, when the aliqu	the time of transfer	•
7. Immediately titrate the I_2 in the conical flask with FA 3 until the solution is p yellow. Add approximately 10 drops of starch indicator into this solution a continue titrating until the point when the solution just turns colourless. Record y titration results.					
8.	Wash out the cor	nical flask w	ith water.		
9	Repeat steps 4 t recorded.	o 8 until a t	otal of five aliquots	s have been titrated	and their res
Results					
aliquot	t / min and s	t _d / min	Initial burette reading / cm ³	Final burette reading / cm ³	Volume FA 3 / cm
1	2 min 40 s	2.7	0.00	18.40	18.40
2	8 min 2 s	8.0	18.40	34.00	15.60
3	13 min 1 s	13.0	34.00	46.50	12.50
4	18 min 1 s	18.0	0.00	9.80	9.80
5	23 min 2 s	23.0	9.80	17.10	7.30
th D	e x-axis on the gr	id in Fig. 2.′ ropriate bes	1. t-fit line taking into	ne y-axis, against de account all of your p	

(e)	Explain why the concentration of iodine in FA 4 used is very much lower than the concentrations of propanone in FA 5 and of hydrochloric acid in FA 2 .
	With propanone and hydrochloric acid in large excess, the concentration of propanone and acid will be approximately constant. Order of reaction with respect to iodine can then be determined because any change in rate will be due to the change in concentration of iodine.
	-
	[1]

[Total: 18]

3	Inve	stig	ati	on of an organic compound and an inorganic	c compound
	FA 7 FA 9	' is a cor will the	an nta pe ə fu	0 mol dm ⁻³ sodium hydrogen carbonate, NaHCC organic solid, Y , which contains two different fur ins two cations and one anion. rform tests to identify: unctional groups in Y and hence deduce its poss ons present in FA 9 .	nctional groups.
	(a)	(i)		Place one spatula of solid FA 7 in a boiling tub followed by 5 cm ³ of distilled water. Shake to en FA 8 . Using a fresh sample for each of the following Table 3.1. The volumes given below are approx measured. Test and identify any gases evolved.	sure complete mixing. Label this solution tests. Carefully record your observations in
				If there is no observable change, write no obse	rvable change.
				Table 3.1	
				Test	Observations
	1		ab tuk un am Ad an	ing a test-tube holder for the test-tube, place out 5 drops of aqueous silver nitrate in a test- be; add aqueous sodium hydroxide dropwise til brown ppt appears. Then add aqueous monia drop-wise until the ppt just dissolves. d about 10 drops of the FA 8 solution, shake d warm for 5 minutes in the water bath.	no observable change
	2			a 2 cm depth of FA 8 in a test-tube, add 1 cm ³ FA 6 .	Effervescence seen Gas forms white ppt with limewater
	ι ι		Us	ace about 1 cm depth of FA 8 into a test tube. ing a test-tube holder, add 8 drops of aqueous omine at the fumehood.	The orange Br_2 is decolourised with formation of white ppt .
				ease dispose all organic waste into the bottle ttle.	e labelled "Organic Waste" and cap the [3]
					[3]
		(ii)		Identity the functional group that Test 1 is used	to determine in Table 3.1 .
				Aldehyde	[1]

	(iii)	Sugg	est two functional groups that could be p	resent in FA 7 .
		Carb	oxyl (Carboxylic acid) AND phenol or phe	nylamine
	(iv)	obse	molecular formula of Y is $C_7H_7O_2N_$. Dr rvations in Table 3.1.	aw one possible structure for Y . Use y
(b)	(i)		a fresh sample for each of the following te	ests. Carefully record your observations in
		Tabl	e 3.2. Table	3.2
			Test	Observations
		1	To a 1 cm depth of FA 9 in a test- tube, add aqueous ammonia slowly, with shaking, until no further change is seen.	Red-brown ppt insoluble in excess
		2	To a 1 cm depth of FA 9 in a test- tube, add aqueous sodium hydroxide slowly, with shaking, until no further change is seen. Warm the mixture using the water bath.	Red-brown ppt insoluble in excess. On warming, gas turns moist red litmus paper blue.
		3	To a 1 cm depth of FA 9 in a test-tube, add 4–5 drops of aqueous silver nitrate	White ppt formed
	1			
	(ii)		ify the anion present in FA 9 . Use evide ort your deduction.	nce from your observations in Table 3.2

		Evidence:
		[1]
		r.,
		Formation of white ppt in test 3 or on addition of $AgNO_3(aq)$ shows the presence of Cl^- .
	(iii)	Describe one further test you can carry out to confirm the identity of the anion present in
ľ	(111)	FA 9.
		Add excess ammonia to the precipitate formed in tests 3 to see if it is soluble. If it is
		soluble in excess ammonia, the anion is Cl^- .
		[1]
		[1]
	(iv)	Identity the cations present in FA 9 .
	(,,,,	
		Fe ³⁺ NH ₄ ⁺
		Cation:
		[Total:12]

4	Plan	ning				
We usually think of iron occurring in compounds in the +2 or +3 oxidation states. How oxidation states of iron are possible; for example, potassium ferrate(VI), K ₂ FeO ₄ , contathe +6 oxidation state.						
	Solutions containing the FeO_4^{2-} ion are dark red in colour. The FeO_4^{2-} ion is a stronger oxidi agent than the MnO_4^- ion. In acidic conditions, FeO_4^{2-} ions are reduced to Fe^{3+} ions.					
	titrati	A student was given a solution, FB 1 , containing potassium ferrate(VI). She was told that b titrating a standard solution of sodium chloride, NaC <i>l</i> , against FB 1 , the concentration of FeO_4^2 ions in FB 1 can be found. At the end point, the reaction mixture turns from colourless to orange.				
	Chloride ions are oxidised as shown: $2C\Gamma(aq) \rightarrow Cl_2(g) + 2e^-$ The overall equation in the reaction between FeO_4^{2-} and CI^- is as shown: $6CI^-(aq) + 16H^+(aq) + 2FeO_4^{2-}(aq) \rightarrow 3Cl_2(g) + 2Fe^{3+}(aq) + 8H_2O(I)$ She tested the 0.100 moldm ⁻³ solution of NaC <i>l</i> provided. She found that 10 drops of FB 1 , when suitably acidified, reacted completely with 32 drops of NaC <i>l</i> solution.					
(a)	Expla in [1]	ain why the 0.100 mol dm ⁻³ solution of NaC <i>l</i> first provided would have been unsuitable for use the student's titration.				
	10 drops of FB 1 reacted completely with 32 drops of NaCl solution implies that in a titration, on 7.80 cm ³ of FB 1 is needed to react with 25.0cm ³ of 0.100 moldm ⁻³ NaCl (or titre volume will be to low), leading to high percentage error.					
 (b) She correctly deduced that a suitable concentration of the solution of NaC<i>l</i> for titratic FB 1 solution was 0.320 mol dm⁻³. This solution of NaC<i>l</i> is labelled as FB 2. 						
	(i)	Using this data, calculate the mass of solid sodium chloride, NaC <i>l</i> , required to make a 250 cm ³ standard solution of FB 2 for the experiment. [1]				
		[A _r : Na, 23.0; C <i>l</i> , 35.5]				
		Amount of NaC/ needed = $0.320 \times \frac{250}{1000} = 0.0800$ mol Mass of NaC/ solid = $0.08 \times (23.0 + 35.5)$ = 4.68 g				
	(ii)	Write a plan for the volumetric analysis of FB 1 . Your plan should include the preparation of a 250 cm ³ standard solution of FB 2 .				
		You may assume that you are provided with: aqueous potassium ferrate(VI), FB 1 				

	6 g solid sodium chloride		
	 1 mol dm⁻³ sulfuric acid 		
	distilled water		
	the equipment normally found in a school or college laboratory		
	Include in your plan:		
	the apparatus you would use,		
	 the quantities you would use, 		
	 the procedure you would follow, 		
	 the measurements you would make. 		
	Note: No heating is needed for this titration although activation energy is high for similarly charged ions to react. [7]		
	 Using a weighing balance, weigh 4.68 g of solid NaC/ in a 100cm³ beaker. Using a 50cm³ measuring cylinder, add 50cm³ of sulfuric acid into the beaker to dissolve the solid. 		
	3. Transfer the solution into a 250cm ³ volumetric flask.		
	 Rinse the 100cm³ beaker with distilled water several times and adding each rinsing into the 250cm³ volumetric flask. 		
	5. Make up to the mark with distilled water.		
	6. Stopper, invert and shake. Label this solution as FB 2.		
	7. Pipette 25.0 cm ³ of FB 2 into a 250 cm ³ conical flask.		
	8. Fill a burette with FB 1.		
	9. Titrate FB 2 against FB 1 until the solution turns from colourless to orange.		
	10. Repeat the titration to obtain two consistent readings of ±0.10cm ³ .		
(-)	In the student's tituation, she found that $n = m^3$ of ED 4 residued with sussible $n = m^3$ of ED 2 of		
(c)	In the student's titration, she found that p cm ³ of FB 1 reacted with exactly q cm ³ of FB 2 of concentration M mol dm ⁻³ .		
	Outline how you would use her results to determine the concentration of FB 1 .		
	No. of moles of FB2 used in titration = $\frac{M}{1000} \times q$		
	1000		
	No. of moles of FB1 used in titration = $\frac{M}{1000} \times q \times \frac{1}{3}$		
	1000 3		
	M 1 p		
	Concentration of FB1 = $\frac{M}{1000} \times q \times \frac{1}{3} \div \frac{p}{1000}$		
	1000 5 1000		
	Μα		
	$= \frac{Mq}{3p} \mod dm^{-3}$		
	Зр		
(d)	Explain the effect of using hydrochloric acid in place of sulfuric acid on the titre value. [1]		
	Titre value will be larger because more FB1 will be required to react with the additional chloride		

ions introduced by the presence of HCI.			

[Total: 12]

Qualitative Analysis Notes

[ppt. = precipitate]

(a) Reactions of aqueous cations

cation	reaction with			
cation	NaOH(aq)	NH₃(aq)		
aluminium, A <i>l</i> ³⁺(aq)	white ppt. soluble in excess	white ppt. insoluble in excess		
ammonium, NH₄⁺(aq)	ammonia produced on heating	-		
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.		
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.		
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess		
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution		
iron(II), Fe ²⁺ (aq)	green ppt., turning brown on contact with air insoluble in excess	green ppt., turning brown on contact with air insoluble in excess		
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess		
magnesium, Mg²⁺(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess		
manganese(II), Mn²⁺(aq)	off-white ppt., rapidly turning brown on contact with air insoluble in excess	off-white ppt., rapidly turning brown on contact with air insoluble in excess		
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess		

(b) Reactions of anions

ions	reaction	
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids	
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with $Ag^{+}(aq)$ (soluble in $NH_{3}(aq)$)	
bromide, Br⁻(aq)	gives pale cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$)	
iodide, I⁻(aq)	gives yellow ppt. with Ag⁺(aq) (insoluble in NH₃(aq))	
nitrate, NO₃⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil	
nitrite, NO₂⁻(aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil; NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO ₂ in air)	
sulfate, SO₄²⁻(aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)	
sulfite, SO ₃ ²⁻(aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in dilute strong acids)	

(c) Test for gases

gas	test and test result		
ammonia, NH ₃	turns damp red litmus paper blue		
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)		
chlorine, Cl_2	bleaches damp litmus paper		
hydrogen, H ₂	"pops" with a lighted splint		
oxygen, O ₂	relights a glowing splint		
sulfur dioxide, SO ₂	turns aqueous acidified potassium manganate(VII) from purple to colourless		

(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl_2	greenish yellow gas	pale yellow	pale yellow
bromine, Br ₂	reddish brown gas / liquid	orange	orange-red
iodine, I_2	black solid / purple gas	brown	purple