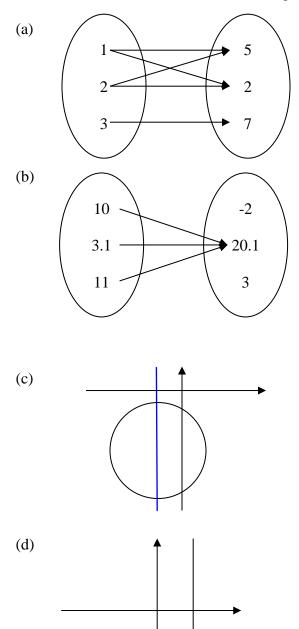
BMQ Solutions to Tutorial 4: Functions

Basic Mastery Questions

1. State, with reasons, which of the following relationships are functions.



Because $1 \mapsto 5$ and $1 \mapsto 2$ 1 has no unique image. Therefore this is not a function.

Every element in the domain has exactly one image in the range. Therefore this is a function.

Note: Many-One relationships are still functions

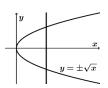
A vertical line intersects the curve at 2 separate points.

Therefore, it is a one-many relationship Therefore it is not a function.

The relationship maps a number to all real numbers.

Therefore, it is a one-many relationship Therefore it is not a function.

(e) y = 2 y = 2 is a function, since any $x \in \mathbb{R}$, $x \mapsto 2$. Therefore each element has exactly one image Therefore it is a function. (f) $y = \pm \sqrt{x}$ $y = \pm \sqrt{x}$ is not a function since any x > 0 is mapped to 2 values. Alternatively, this graph fails the vertical line test.



- 2. State the range of the following functions.
 - (a) $f: x \mapsto x^2 2x, x \in \mathbb{R}$

From the graph, $R_f = [-1, \infty)$

(b)
$$f: x \mapsto \frac{1}{x^2+1}, x \in \mathbb{R}$$

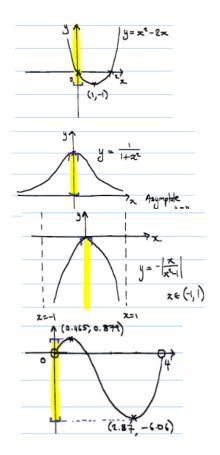
From the graph, $R_f = (0,1]$

(c)
$$g: x \mapsto -\left|\frac{x}{x^2 - 1}\right|, -1 < x < 1$$

From the graph, $R_f = (-\infty, 0]$

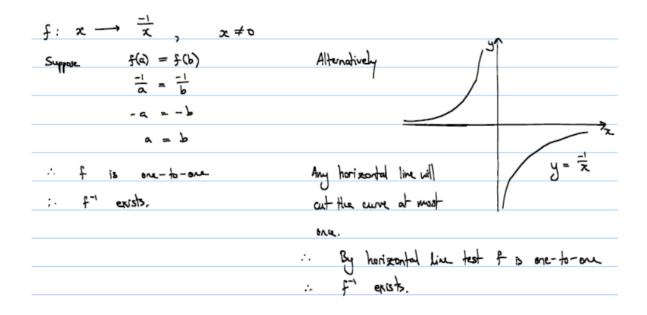
(d)
$$g: x \mapsto x^3 - 5x^2 + 4x, x \in (0,4)$$

From the graph (and using GC), $R_f = [-6.06, 0.879]$



3. State, with reasons, whether the following functions have an inverse.

(a)
$$f: x \mapsto \frac{-1}{x}, x \neq 0$$



(b) $g: x \mapsto x^2 - 2x, x < 0$	
$q: z \longmapsto z^{-2x}, z < 0$	
Suppose $q(a) = q(b)$	Alternatively,
a2-la - b2-lb	y=g(x)
(a-1)2-1 - (b-1)2-1	
$a-1 = \pm (b-1) (Kej - ve, since$	
a=b a, b<0)	~
g is one-to-one and g exists.	By the horizontal line test, g is anto-one
	·· q" exists.
$h: x \longmapsto x^{c} + \lambda_{2c}, x \ge -\lambda$ Then $h(-2) = h(o) = 0$	Alternatively,
h is not one-to-one	y = h(x)
and h ⁻¹ does not exist.	
	-2-171 -0.277
: $h(-1.71) = h(-0.299) = \frac{-1}{2}$	× ×
h fails the horizontal line test.	1- 2
: h is not one-to-one and thus	h' does not exist.
(d) $h: x \mapsto -\ln 2x, x > 0$	

$h: x \mapsto -h lx$	x >0	Alternatively
Suppose $h(a) = h(b)$		$\int \int y = h(x)$
-h 2a = -h 2b		
hea - heb		í r
2a = 26		
a = b		. No horizontal line will intersect
h is one-to-one		y - h b) more than once, h passes
Thus ht exists.		the horizontal line test.
		: h is one-to-one and thus h' exists.

4. State, with reasons, whether the composition $g \circ f$ exists for the following functions.

a)
$$f: x \mapsto \overline{x^{2}}, z \neq b$$

 $g: x \mapsto h(-\overline{x}), x < b$
 $g: x \mapsto h(-\overline{x}), x < b$
 $g: x \mapsto h(-\overline{x}), x < b$
 $g: x \mapsto \frac{1}{x^{2}}, x \neq b$
 $g: x \mapsto \frac{1}{x^{2}}, x \neq b$
 $g: x \mapsto \frac{1}{x^{2}}, x \neq b$
 $g: x \mapsto x^{3}, x \in (0, 1]$
 $g: x \mapsto \sqrt{x}, x > 0$
 $g: x \mapsto \sqrt{x}, x \neq b$
 $R_{p} = R \setminus \{0\} \notin (-\infty, 1) = D_{q}$
 $g: x \mapsto x, x < 1$
 \therefore $g: f \text{ does not exist.}$