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5(a) (i) 

Consider the green, yellow and purple tiles as 1 unit. Number of ways to arrange the green, 

yellow and purple tiles within the unit  

= 
5!

3!
 

Arranging the unit with the rest of the tiles 

=
7!

3!3!
 

 

Thus number of possible arrangements for the tiles  

= 
5! 7!

3! 3!3!


 
=2800  



(ii)Number of ways to arrange the 3 red, 3 green, 1 yellow and 1 purple tile = 
8!

3!3!
 

Number of ways to slot in the blue tiles =
9

3

 
 
 

 

 

Number of possible arrangements such that no blue tiles are placed next to another 

= 
8!

3!3!


9

3

 
 
 

  

=94080 

(iii) 

Number of possible arrangements such that a red tile at the beginning and another red tile at 

the end of the line 

= 
(3 3 3)!

3!3!

 
= 10080  

5(b) (i) Number of ways =  10 1 ! 362880   

 

(ii) Insertion method 

 Number of ways   7

27 1 ! 2! 2! 60480C       

 

 

 

(iii) Number of ways  9 1 ! 10 2! 806400      
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P(wins exactly one DVD) 
4 1 5 5 1 37

2       (0.228 (3 s.f.))
9 6 9 6 6 162

        

6(ii) P(different colour|did not win any DVD) 

P(different colour and did not win any DVD)

P(did not win any DVD)

5 5 5

259 6 6         (0.510 (3 s.f.))
4 5 5 5 5 49

9 6 9 6 6



 

 

   

 

6(iii) 
P(wins 2 DVDs| different colour)

1 1 1

6 6 36
    

6(iv) Let X be the number of DVDs John can win, out of 2 dice throws.  

Then X ~ B(2, 
1

6
). 

Mean number of DVDs = 
1 1

2
6 3

   

7(i) 0.946r    

7(ii) 

 
The scatter diagram shows that the relationship between t  and x  is non-linear.  

 

7(iii) From the scatter diagram, we see that y decreases as x increases, which is the case for 

model A ( , 0
b

x a b
t

   ). 

Hence model A is appropriate. 

 

7(iv) 0.75046151

11.0423697

11.0423697
0.75046151
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b

x
t




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11.0423697
0.75046151 0.9958475033 0.996

45
x      

This estimate is reliable since 45t   is between the range of values of t from 5 to 80, and 

the product moment correlation coefficient between x and t is 0.9754 (3 s.f.), which 

suggests a strong  positive linear correlation between x and t. 

8(a) Let I be the r.v. ‘no. of packets of macademia nuts sold in a week’.   Po 10I  

   P 11 1 P 11 1 0.69677 0.30323I I        

 

Let W be the r.v. ‘no. of weeks, out of 52, of which more than 11 packets of macademia nuts 



are sold per week’. 

    B 52,  P 11 ,  i.e., ~ B 52, 0.30323  W I W  

 

 P 0.08W k    

 P 0.92W k   

Using GC, 

  P 20 0.869 0.92W    , 

 P 21 0.9209 0.92W     

Least value of k = 21. Let I be the r.v. ‘no. of packets of macademia nuts sold in a week’.  

 Po 10I  

   P 11 1 P 11 1 0.69677 0.30323I I        

 

Let W be the r.v. ‘no. of weeks, out of 52, of which more than 11 packets of macademia nuts 

are sold per week’. 

    B 52,  P 11 ,  i.e., ~ B 52, 0.30323  W I W  

 

 P 0.08W k    

 P 0.92W k   

Using GC, 

  P 20 0.869 0.92W    , 

 P 21 0.9209 0.92W     

Least value of k = 21. 

 Required probability 

= P(exactly 3 bonuses within the first 10 wks & bonus in the 11th wk) 

= P(exactly 3 bonuses within the first 10 wks) × P(bonus in the 11th wk) 

     
3 710

3 P 11 1 P 11 P 11 0.00668C I I I              

Or, 

Let X = number of weeks (out of 10) where bonus is paid. 

X ~ B(10, P(I > 11))  

P(exactly 3 bonuses within the first 10 wks & bonus in the 11th wk) 

= P(exactly 3 bonuses within the first 10 wks) × P(bonus in the 11th wk) 

= P(X = 3) × P(I > 11) = 0.00668 

8b(i) Let B( , )X n p  
Given 3,    (1 ) 2.85 60, 0.05np np p n p     

 
For X   

  
 o

60 is large (>50) and  is small ,  3 5,

P 3  approximately

n p np

X

  


 

Similarly for Y 
 o

80 is large (>50) and 0.02 is small ,  1.6 5,

P 1.6  approximately

n p np

Y

   


 



By additive property of Poisson distribution, hence 

 oP 4.6X Y  

8(b)(ii) From GC: 
 
P( 3) 0.163X Y    (3 s.f.) 

9(i) Let X and Y be random variables for the amount of time Singaporean youths and American 

youths spend at an ice skating rink per month respectively 

 2~ 10.1,3.2X N  and  2~ 9.3,2.3Y N  

( 5) 0.0555P X    

9(ii)  2 2 2

1 2 2 ~ 2 10.1 2 9.3,2 3.2 2 2.3

(1.6,41.64)

X X Y N

N

       

  

)2( 21 YXXP   
)02( 21  YXXP  

=0.5979 

=0.598
 

9(iii) Let W be the random variable for the cost, in $, spent by a Singaporean youth per month. 

 2 27 ~ 7 10.1,7 3.2 (70.7,501.76)W X N N     

 

( 120) 0.0139P W    
10 For each of the classes from Arts and Business faculty,  

P(a student being selected) =
6

20
. 

For each of the classes for Science faculty,  

P(a student being selected) = 
6

30
. 

 

Since the probabilities of selection is not common, 

the sample is not random. 

 Line up the 240 students in some order (eg alphabetical order of name). 

 

From the first 
240

4
60

  students, select one randomly. 

 

Thereafter, select the next 4
th
 student till 60 are selected. 

11(i) Let X be the volume of coffee dispensed in a cup (in ml) with population mean   

0

1

: 100

: 100

H

H








 

Assumption:  2~ ,X N    

 

Test Statistic:  
X

T
s

n


   

    

Level of significance:  5% 



Reject H0 if p-value < 0.05 

Under H0, using GC, p-value = 0.0550537= 0.0551 (3 s.f) 

 

Since p-value=0.0551>0.05,  we do not reject H0  

and conclude that there is insufficient evidence at 5% level of significance that the machine 

is dispensing too much coffee  

 
To conclude that the machine is dispensing too much coffee i.e. 

100
p value


   

5.51   

 


