

Name:	_() Date:
-------	------------

Homework C: Vector Product and Planes – Part 1

1 The position vectors of points A, B and C are $\mathbf{a} = \mathbf{i} + \mathbf{j}$, $\mathbf{b} = \mathbf{i} + \mathbf{k}$ and $\mathbf{c} = \mathbf{j} + \mathbf{k}$ respectively.

Find

Ans: i – j – k	$\mathbf{a} \times \mathbf{b}$,	(i)
Ans: – i – j + k	$\mathbf{b} imes \mathbf{c}$,	(ii)
Ans: – j + k	$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c},$	(iii)
Ans: i – j	$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}).$	(iv)

2 Relative to the origin *O*, the position vectors of points *A* and *B* are $\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j}$ - 2**k** and $\overrightarrow{OB} = 2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$ respectively.

The point *P* on \overrightarrow{AB} is such that $AP : PB = \lambda : 1 - \lambda$.

Show that $\overrightarrow{OP} = (1 + \lambda)\mathbf{i} + (2 - 5\lambda)\mathbf{j} + (-2 + 8\lambda)\mathbf{k}$.

- (a) Find the value of λ if \overrightarrow{OP} is perpendicular to \overrightarrow{AB} . Ans: $\frac{5}{18}$
- (b) Find the value of λ if $\angle AOP = \angle POB$. Ans: $\frac{3}{10}$
- 3 The position vectors of points A and B are $\mathbf{a} = 9\mathbf{i} + 9\mathbf{j} + 9\mathbf{k}$ and $\mathbf{b} = 7\mathbf{i} 14\mathbf{j} + 14\mathbf{k}$ respectively.
 - (a) Find the length of projection of **a** on **b**. Ans: 3
 - (b) Use your answer in (a) to resolve the vector **a** into two components, one parallel to **b** and one perpendicular to **b**.

Ans: i – 2j + 2k, 8i + 11j + 7

This study source was downloaded by 100000857398866 from CourseHero Pergen bf 49-2024 23:34:49 GMT -06:00

4 Referred to the origin O, the position vectors of points A, B, C and D are

i-j, i+k, i-j+k and j+2k

respectively.

Find a

(i) parametric equation for the plane containing the points A, B and C,

Ans: $\mathbf{r} = \mathbf{i} - \mathbf{j} + \lambda(\mathbf{j} + \mathbf{k}) + \mu \mathbf{k}, \ \lambda, \mu \in \mathbf{IR}$

(ii) vector (scalar product) equation for the plane containing the points *A*, *B* and *D*,

Ans: $\mathbf{r} \cdot (-\mathbf{j} + \mathbf{k}) = 1$

(iii) Cartesian equation for the plane containing the points *A*, *C* and *D*. Ans: 2x + y = 1

5 The vector equation of a plane π is $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) = 1$.

- (i) Show that the point A(9, 2, 6) lies in the plane π .
- (ii) Show that the point B(2, -5, 6) does not lie in the plane π , and find the shortest distance from the point *B* to the plane π . Ans: 7
- (iii) The shortest distance from the point C(2009, 7, m) to the plane π is 26. Find the possible value(s) of *m*. Ans: 972 or 1050
- (iv) Find the coordinates of the foot of perpendicular from the point D(4, 7, -5) to the plane π . Ans: (1, 1, 1)
- 6 The vector equations of a line / and a plane π are $\mathbf{r} = m\mathbf{i} \mathbf{j} + \lambda (2\mathbf{i} 2\mathbf{j} + \mathbf{k}), \lambda \in \mathbb{R}$ and $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 1$ respectively.
 - (i) If m = 3, show that the line *l* lies in the plane π .
 - (ii) If m = 6, find the shortest distance from the line *I* to the plane π . Ans: 1
 - (iii) Find the possible value(s) of *m* if the shortest distance from the line *l* to the plane π is 7. Ans: -18 or 24

This study source was downloaded by 100000857398866 from CourseHero. Page 2 bf-69-2024 23:34:49 GMT -06:00

7 The equation of two lines and a plane are as follows:

$$I_1$$
: $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \alpha (\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}), \alpha \in \mathbb{R}$

$$I_2$$
: $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \beta (m\mathbf{i} + 5\mathbf{j} - \mathbf{k}), \beta \in \mathbb{R}$

- π : **r** · (3**i** + 2**j** + **k**) = 10
- (i) Find the angle between the line I_1 and the plane π . Ans: 30°
- (ii) Find the possible value(s) of *m* if the angle between the line I_2 and the plane π is 60°. Ans: 4 or 32

Optional Question:

It is given that $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$.

(a) By considering the scalar product $\mathbf{a} \cdot \mathbf{b}$, prove that

 $(a_1b_1 + a_2b_2 + a_3b_3)^2 \leq (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2).$

(b) By considering the vector product $\mathbf{a} \times \mathbf{b}$, prove that

 $(a_1b_2 - a_2b_1)^2 + (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 \leq (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2).$

Homework C: Vector Product and Planes – Part 2

1. For each of the following pairs of planes, find the acute angle between the planes and an equation of their line of intersection.

(i)
$$\mathbf{r} \cdot \begin{pmatrix} 9 \\ -3 \\ -4 \end{pmatrix} = 7 \text{ and } \mathbf{r} \cdot \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} = 1$$

(ii) $\mathbf{r} \cdot \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} = -4 \text{ and } \mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = 1$

2. Show that A(2, 3, -2) lies in the plane π_1 and π_2 whose equations are

$$\mathbf{r} \cdot \begin{pmatrix} 3 \\ -2 \\ -2 \end{pmatrix} = 4$$
 and $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = 9$ respectively. Find a vector parallel to both

 π_1 and π_2 . Hence, deduce an equation for the line where π_1 meets π_2 .

3. For each of the following pairs of planes, find an equation of their line of intersection.

(i)
$$\mathbf{r} = 2\mathbf{i} + \mathbf{j} + \lambda (-\mathbf{j} - \mathbf{k}) + \mu(\mathbf{i} - \mathbf{j} - \mathbf{k}), \lambda, \mu \in \mathbb{R}$$
 and

 $\textbf{r} = 2\textbf{j} - \textbf{k} \ + s \ (2\textbf{i} - \textbf{j}) + t(\textbf{i} - \textbf{k}) \ , \ s \ , \ t \ \in \ IR$

(ii) $\mathbf{r} = 3\mathbf{i} + \mathbf{k} + \lambda (2\mathbf{i} - \mathbf{j} + 2\mathbf{k}) + \mu(2\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}), \lambda, \mu \in \mathbb{R}$ and

$$\mathbf{r} \cdot \begin{pmatrix} 2\\ -6\\ 1 \end{pmatrix} = -5$$

This study source was downloaded by 100000857398866 from CourseHero. Page 4 bf-69-2024 23:34:49 GMT -06:00

- **4.** For each of the following, determine if the three planes intersect and find the point or line of intersection when it exists.
 - (i) 3x+2y+z=15, 2x-y+3z=10 and x+y+2z=7
 - (ii) x-2y-z=6, 2x-4y+2z=15 and x-2y+z=8
 - (iii) 2x + y + 2z = -2, 6x + 5y 2z = 6 and x + y z = 4
 - (iv) 2x+2y-z=2, 2x-2y+z=2 and 8x-6y+3z=8
- 5. The equations of planes π_1 , π_2 and π_3 are 5x y 2z = 6,

-2x+y+3z = -4 and x+y+4z = a respectively. Discuss the solution of these three equations when

- (a) *a* = -9
- (b) *a* = -2

giving a geometrical interpretation for each case.

Answers:

1. (i) 7.6°,
$$\mathbf{r} = \begin{pmatrix} 0 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
, $\lambda \in \mathbb{R}$ (ii) 51.9°, $\mathbf{r} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$, $\lambda \in \mathbb{R}$

2.
$$\begin{pmatrix} 4 \\ -5 \\ 11 \end{pmatrix}$$
, $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -5 \\ 11 \end{pmatrix}$, $\lambda \in \mathbb{R}$

3. (i)
$$\mathbf{r} = \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}$$
, $\lambda \in \mathbb{IR}$ (ii) $\mathbf{r} = \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$, $\lambda \in \mathbb{IR}$

4. (i) (4, 1, 1) (ii) No intersection (iii) No intersection (iv) $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \lambda \in \mathbb{R}$

5. (i) No common point; each plane is parallel to the line of intersection of the other two planes.

(ii) They intersect at the line
$$\mathbf{r} = \begin{pmatrix} 2/3 \\ -8/3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 11 \\ -3 \end{pmatrix}$$
, $\lambda \in \mathbb{R}$

This study source was downloaded by 100000857398866 from CourseHero.Page 5 bf-69-2024 23:34:49 GMT -06:00

<u>Quiz</u>

The lines L_1 and L_2 meet at the point *P*. The line L_3 is coplanar with L_1 and L_2 and is perpendicular to L_1 . Given that L_1 and L_2 are parallel to the vectors **a** and **b**

respectively, show that L₃ is parallel to the vector $\mathbf{b} - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right) \mathbf{a}$.

The equations of L₁ and L₂ are now known to be $\mathbf{r} = \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix} + t \begin{pmatrix} 11 \\ 10 \\ 2 \end{pmatrix}$ and

 $\mathbf{r} = \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix} + s \begin{pmatrix} 17 \\ 3 \\ 4 \end{pmatrix}$ respectively, where *s* and *t* are real parameters. Find the equation

of the line L₃, given that L₃ also passes through *P*.

The line L₄ has equation $\mathbf{r} = \begin{pmatrix} 10 \\ -3 \\ 1 \end{pmatrix} + u \begin{pmatrix} -3 \\ 4 \\ -1 \end{pmatrix}$, where *u* is a real parameter. Determine if

 L_3 and L_4 are skew or intersecting.

The line L_5 is perpendicular to both L_3 and L_4 . Find the acute angle between L_5 and the plane containing L_1 and L_2 .

Ans:
$$\mathbf{r} = \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ -7 \\ 2 \end{pmatrix}$$
; L₃ and L₄ are skew lines ; 83.9°

This study source was downloaded by 100000857398866 from CourseHero.Page 6 bf-69-2024 23:34:49 GMT -06:00