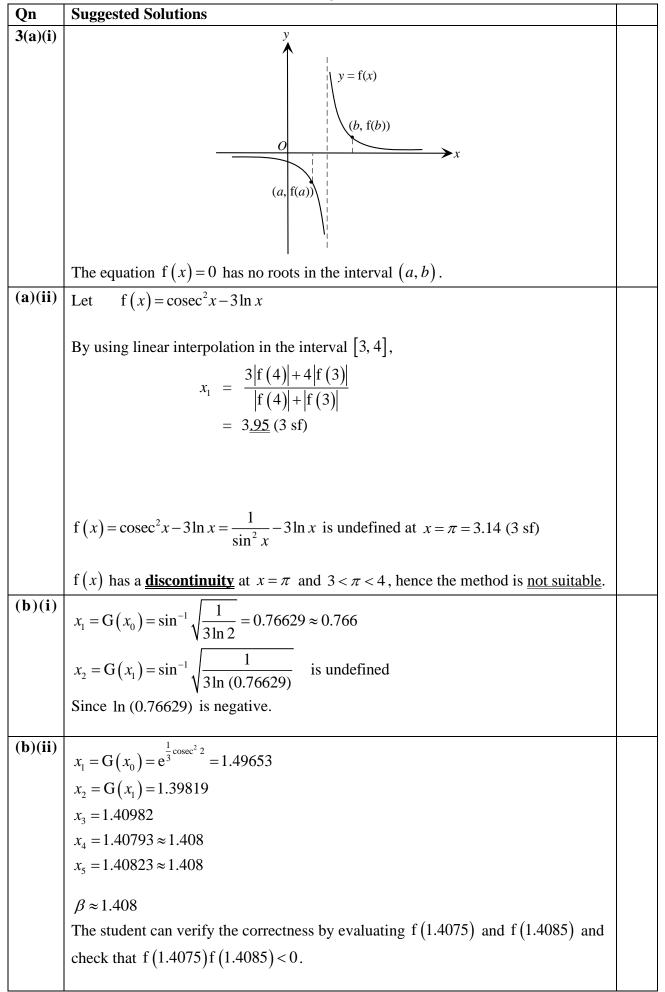
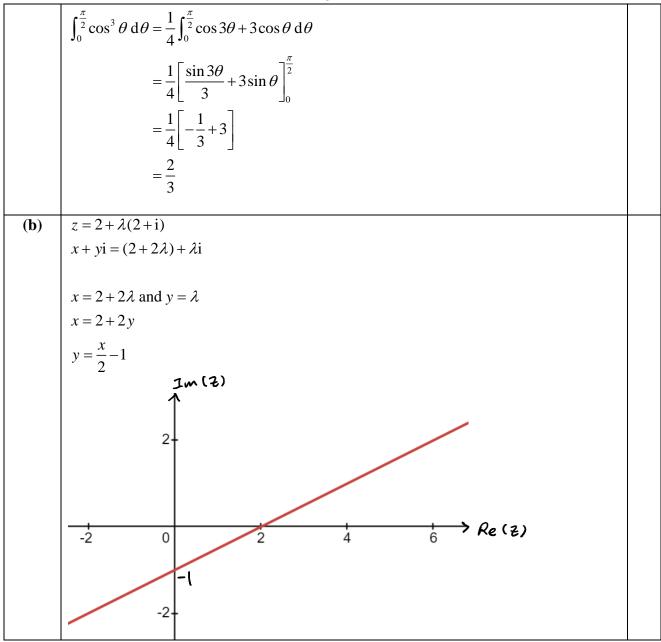
Qn	Suggested Solutions							
1(a)	$\int_{0}^{\frac{\pi}{5}} \cos x \mathrm{d}x$							
	$\int_{0}^{3} \operatorname{Let} f(x) = \cos x,$							
	$f(x) = \cos x \qquad 1 \qquad \cos \frac{\pi}{10} \qquad \cos \frac{\pi}{5}$							
	Using Simpson's rule with 2 strips,							
	$\int_{0}^{\frac{\pi}{5}} \cos x dx \approx \frac{1}{6} \left(\frac{\pi}{5} - 0\right) \left[1 + 4\left(\cos\frac{\pi}{10}\right) + \cos\frac{\pi}{5}\right]$							
	$\sin 2\left(\frac{\pi}{10}\right) \approx \frac{\pi}{30} \left\{ 1 + 4\cos\frac{\pi}{10} + \cos 2\left(\frac{\pi}{10}\right) \right\}$							
	$2\sin\frac{\pi}{10}\cos\frac{\pi}{10} \approx \frac{\pi}{30} \left(1 + 4\cos\frac{\pi}{10} + 2\cos^2\frac{\pi}{10} - 1\right)$							
	$\sqrt{1 - \cos^2 \frac{\pi}{10}} \approx \frac{\pi}{30} \left(2 + \cos \frac{\pi}{10} \right)$							
$1-x^2 \approx \left(\frac{\pi}{30}\right)^2 \left(2+x\right)^2$, let $x = \cos\frac{\pi}{10}$								
	$1 - x^2 \approx \left(\frac{\pi}{30}\right)^2 \left(4 + 4x + x^2\right)$							
	$\left[\left(\frac{\pi}{30}\right)^2 + 1\right]x^2 + \left(\frac{\pi}{15}\right)^2 x + \left[\left(\frac{\pi}{15}\right)^2 - 1\right] \approx 0$							
	Therefore $\cos \frac{\pi}{10}$ is approximately the root of							
	$\left[\left(\frac{\pi}{30}\right)^2 + 1\right]x^2 + \left(\frac{\pi}{15}\right)^2 x + \left[\left(\frac{\pi}{15}\right)^2 - 1\right] = 0.$							
(b)	Solving $\left[\left(\frac{\pi}{30}\right)^2 + 1\right]x^2 + \left(\frac{\pi}{15}\right)^2 x + \left[\left(\frac{\pi}{15}\right)^2 - 1\right] = 0$ using GC,							
	$x \approx 0.951051199$ and $x \approx -0.9944402928$							
	Since $\frac{\pi}{10}$ is acute, $\cos \frac{\pi}{10}$ is positive.							
	$\therefore \cos\frac{\pi}{10} \approx 0.9511 \ (4 \text{ dp})$							

Section A: Pure Mathematics [50 marks]

Qn	Suggested Solutions
2(i)	C is a parabola, then $k = 3$
	C is an ellipse, then $k > 3$
	C is a hyperbola, then $0 < k < 3$
(ii)	$r = \frac{4}{2}$
	$r = \frac{1}{2 + 3\sin\theta}$
	$2r + 3r\sin\theta = 4$
	$2\sqrt{x^2 + y^2} + 3y = 4$
	$2\sqrt{x^{2} + y^{2}} + 3y = 4$ $\sqrt{x^{2} + y^{2}} = 2 - \frac{3}{2}y$
	$x^{2} + y^{2} = 4 - 6y + \frac{9}{4}y^{2}$
	$x^2 - \frac{5}{4}y^2 + 6y = 4$
	$x^{2} - \frac{5}{4} \left(y - \frac{12}{5} \right)^{2} = -\frac{16}{5}$
	$\frac{\left(y - \frac{12}{5}\right)^2}{\left(\frac{8}{5}\right)^2} - \frac{x^2}{\left(\frac{4}{\sqrt{5}}\right)^2} = 1$
	$\left(\frac{8}{5}\right)^2$ $\left(\frac{4}{\sqrt{5}}\right)^2$
(iii)	Eccentricity, $e = \frac{3}{2}$
	and coordinates of the two foci are $(0,0)$ and $(0,4.8)$



$$\begin{array}{l} \hline \mathbf{Qn} & \mathbf{Suggested Solutions} \\ \hline \mathbf{4(a)(i)} & \frac{1}{2}(z+z^{-1}) = \frac{1}{2}(\cos\theta + i\sin\theta + \cos\theta - i\sin\theta) \\ & = \cos\theta \quad (\mathrm{shown}) \\ \hline \mathbf{a(a)(ii)} & \cos^{n}\theta = \frac{1}{2^{n}}(z+z^{-1})^{n} \\ & = \frac{1}{2^{n}}\left[z^{n} + \binom{n}{1}z^{n+z^{-1}} + \binom{n}{2}z^{n+2}z^{-2} + \ldots + \binom{n}{n-2}z^{2}z^{-n+2} + \binom{n}{n-1}z^{1}z^{-n+1} + z^{-n}\right] \\ & -\cdots \\ \hline \mathbf{(a)(ii)} & \operatorname{Kin} \theta = \frac{1}{2^{n}}\left[z^{-n} + \binom{n}{1}z^{-n+2} + \binom{n}{2}z^{-n+4} + \ldots + \binom{n}{n-2}z^{n-4} + \binom{n}{n-1}z^{n-2} + z^{n}\right] \\ & -\cdots \\ \hline \mathbf{(a)(ii)} & \operatorname{Kin} \theta = \frac{1}{2^{n}}\left[z^{-n} + \binom{n}{1}z^{-n+2} + \binom{n}{2}z^{-n+4} + \ldots + \binom{n}{n-2}z^{n-4} + \binom{n}{n-1}z^{n-2} + z^{n}\right] \\ & -\cdots \\ \hline \mathbf{(2)} & \operatorname{Since} \binom{n}{k} = \binom{n}{n-k}, \text{ where } k \text{ is an integer } 0 \le k \le n \\ \hline \mathbf{(1)+(2)}, \\ & 2\cos^{n}\theta = \frac{1}{2^{n}}\left[(z^{n} + z^{-n}) + \binom{n}{1}(z^{n-2} + z^{-n+2}) + \binom{n}{2}(z^{n-4} + z^{-n+4}) + \ldots \\ & + \binom{n}{n-2}(z^{-n+4} + z^{n-4}) + \binom{n}{n-1}(z^{-n+2} + z^{n-2}) + (z^{n} + z^{-n})\right] \\ & = \frac{2}{2^{n}}\left[\cos n\theta + \binom{n}{1}\cos(n-2k)\theta + \binom{n}{2}\cos(n-4)\theta + \ldots + \cos(-n)\theta\right] \\ & = \frac{2}{2^{n}}\sum_{k=0}^{n}\binom{n}{k}\cos(n-2k)\theta \\ \hline \textbf{Therefore, } \cos^{n}\theta = \frac{1}{2^{n}}\sum_{k=0}^{n}\binom{3}{k}\cos(3-2k)\theta \\ & = \frac{1}{8}[\cos 3\theta + 3\cos \theta + 3\cos(-\theta) + \cos(-3\theta)] \\ & = \frac{1}{4}(\cos 3\theta + 3\cos \theta) \end{aligned}$$



	6	
Qn	Suggested Solutions	
5(i)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	
	$\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{b^2 x}{a^2 y}$	
	dx a y	
	Equation of tangent at <i>P</i> ,	
	$y - y_0 = -\frac{b^2 x_0}{a^2 y_0} (x - x_0)$	
	$a^{2}y_{0}y - a^{2}y_{0}^{2} = -b^{2}x_{0}x + b^{2}x_{0}^{2}$	
	$b^2 x_0 x + a^2 y_0 y = a^2 y_0^2 + b^2 x_0^2$	
	$\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = \frac{y_0^2}{b^2} + \frac{x_0^2}{a^2}$	
	$\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$ (shown)	
(ii)	Equation of tangent at P, $\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$	
	Intersect with directix $x = \frac{a}{a}$,	
	$\frac{x_0}{a^2} \left(\frac{a}{e}\right) + \frac{y_0 y}{b^2} = 1$	
	$\frac{y_0 y}{b^2} = 1 - \frac{x_0}{ae}$	
	$y = \frac{b^2 (c - x_0)}{c y_0} \text{since } e = \frac{c}{a}$	
	$\therefore T\left(\frac{a}{e}, \frac{b^2(c-x_0)}{cy_0}\right)$	
	Gradient of $PF_2 = \frac{y_0 - 0}{x_0 - ae}$	
	$=\frac{y_0}{x_0-c}$	
	.2 (
	$\frac{b^2(c-x_0)}{c-0} = 0$	
	Gradient of $TF_2 = \frac{cy_0}{\frac{a}{e} - ae}$	
	$\frac{a}{e} - ae$	
	č	
	$=\frac{b^2 e(c-x_0)}{c y_0 \left(a-a e^2\right)}$	

$$7$$
Gradient of $PF_2 \times \text{Gradient of } TF_2 = \frac{y_0}{x_0 - c} \times \frac{b^2 e(c - x_0)}{cy_0(a - ae^2)}$

$$= -\frac{b^2 e}{ac} \left(\frac{1}{1 - e^2}\right)$$

$$= -\frac{b^2}{a^2} \left(\frac{1}{1 - e^2}\right)$$
since $e = \frac{c}{a}$

$$= -b^2 \left(\frac{1}{a^2 - c^2}\right)$$

$$= -1 \quad \because c^2 = a^2 - b^2$$
Therefore, $\angle PF_2T = 90^\circ$
(iii)
$$\frac{PF_2}{PD_2} = e$$

$$\Rightarrow \frac{PF_2}{PT \cos \phi} = e$$

$$\Rightarrow \frac{PF_2}{PT} = e \cos \phi$$
From part (ii), similarly, $\angle PF_1S$ is also 90°

$$\frac{PF_1}{PD_1} = e$$

$$\Rightarrow \frac{PF_1}{PS \cos \phi} = e$$

$$\Rightarrow \frac{PF_1}{PS} = e \cos \phi = \frac{PF_2}{PT}$$
(iv)
$$\cos(\angle SPF_1) = \frac{PF_2}{PT}$$

$$\cos(\angle TPF_2) = \frac{PF_2}{PT}$$

$$\cos(\angle SPF_1) = \cos(\angle TPF_2)$$
 by (iii)
$$\therefore \angle SPF_1 = \angle TPF_2$$
 (Since both angles are acute)

8 Section B: Statistics [50 marks]

Qn	Sugges	Suggested Solutions												
6(a)	The spr	The sprint time of an athlete may not follow normal												
	distribution and hence <i>t</i> -test is not appropriate.													
(b)	Let K_+	Let $K_+ =$ number of '+'.												
	<i>m</i> be th	e po	pulati	ion me	dian o	of dif	feren	ce						
	H ₀ : $m =$													
	H ₁ : $m >$	• U												
		Α	В	С	D	Е	F	G	Н	Ι	J			
	Sign	+	+	+	+		_	+	+	_	+			
	Abs	6	4	10	11	0	5	1	7	2	3			
	diff													
	Rank	6	4	8	9		5	1	7	2	3			
	D = cur	a of	noniti	vo ron	lr - 6	. 4 .	0 1	0 + 1	. 7 .	2 - 2	20			
	P = sun Q = sur		-					9 + 1	+/+	5 – 5	00			
	$\tilde{Q} = \sin t$ $T = \min t$		-		IK – .		_ ,							
		```	~′											
	At 5% ]	level	l, we	reject I	H ₀ if 2	$T \leq 8$								
	Since T			-	-	-								
	there is					hat the	e new	r train	ing is	serre	cuve			
	at 5% le	evel	UI SIE	giinteal	ice.									

Qn	Suggested Solutions	
7(a)	Assumptions:	
	(1) The delays occurring in a month is independent from the delays occuring in another month.	
	(2) The average number of delays occurring in a month is a constant.	
<b>(b)</b>	$D \sim \operatorname{Po}(\lambda)$	
	P(D = 0  or  2  or  4  or  6) = P(D = 0) + P(D = 2) + P(D = 4) + P(D = 6)	
	$= e^{-\lambda} + \frac{e^{-\lambda}\lambda^2}{2!} + \frac{e^{-\lambda}\lambda^4}{4!} + \frac{e^{-\lambda}\lambda^6}{6!}$	
	$=\frac{\mathrm{e}^{-\lambda}}{2}\left(2+\lambda^2+\frac{\lambda^4}{12}+\frac{\lambda^6}{360}\right)$	
	P(D = even) = P(D = 0) + P(D = 2) + P(D = 4) + P(D = 6) +	
	$= \frac{e^{-\lambda}}{2} \left( 2 + \lambda^2 + \frac{\lambda^4}{12} + \frac{\lambda^6}{360} + \dots \right)$	
	$\frac{1}{2} \left( 1 + e^{-2\lambda} \right) = \frac{e^{-\lambda}}{2} \left( e^{\lambda} + e^{-\lambda} \right)$	
	$=\frac{e^{-\lambda}}{2}\left[\left(1+\lambda+\frac{\lambda^{2}}{2!}+\frac{\lambda^{3}}{3!}+\frac{\lambda^{4}}{4!}+\frac{\lambda^{5}}{5!}+\frac{\lambda^{6}}{6!}\ldots\right)+\left(1-\lambda+\frac{\lambda^{2}}{2!}-\frac{\lambda^{3}}{3!}+\frac{\lambda^{4}}{4!}-\frac{\lambda^{5}}{5!}+\frac{\lambda^{6}}{6!}\ldots\right)\right]$	
	$=\frac{\mathrm{e}^{-\lambda}}{2}\left[2+2\left(\frac{\lambda^{2}}{2!}\right)+2\left(\frac{\lambda^{4}}{4!}\right)+2\left(\frac{\lambda^{6}}{6!}\right)\cdots\right]$	
	$=\frac{\mathrm{e}^{-\lambda}}{2}\left(2+\lambda^2+\frac{\lambda^4}{12}+\frac{\lambda^6}{360}+\ldots\right)$	
	$\therefore P(D = \text{even}) = \frac{1}{2} (1 + e^{-2\lambda})$	

Qn	Suggested Solutions
<b>8</b> (i)	Let $T_{H}$ be the time spent in hours for customers during the
	holiday season.
	$\overline{t}_{H} = \frac{341}{100} = 3.41, \qquad s_{H}^{2} = \frac{1}{99} \left[ 1563 - \frac{(341)^{2}}{100} \right] = \frac{40019}{9900}$
	Since $n = 100 \ge 50$ is large, by Central Limit Theorem,
	$T_{H} \sim N\left(3.41, \frac{40019}{9900} \\ 100\right) \text{ approximately.}$
	For 95% confidence interval, $z_{(0.025)} = 1.9600$
	95% CI for $\mu = \left(3.41 - 1.9600\sqrt{\frac{40019}{9900}}, 3.41 + 1.9600\sqrt{\frac{40019}{9900}}\right)$ =(3.02, 3.80)
	=(3.02, 3.80)
(ii)	Let $T_H$ and $T_N$ be the time spent in hours for customers during the holiday and non-holiday seasons respectively. Let $\mu_H$ and $\mu_N$ be the population mean time spent in hours for customers during the holiday and non-holiday seasons respectively.
	$H_0: \mu_H - \mu_N = 0$ $H_1: \mu_H - \mu_N > 0$
	$\overline{t}_N = \frac{257}{100} = 2.57$ , $s_N^2 = \frac{1}{99} \left[ 1032 - \frac{(257)^2}{100} \right] = \frac{37151}{9900}$
	Since $n = 100 \ge 50$ is large, by Central Limit Theorem,
	$T_N \sim N\left(2.57, \frac{\frac{37151}{9900}}{100}\right)$ approximately.
	Under $H_0$ , test statistic $Z = \frac{\overline{T_H} - \overline{T_N} - 0}{\sqrt{\frac{s_H^2}{100} + \frac{s_N^2}{100}}} \sim N(0, 1)$
	approximately

	11	
	$z = \frac{3.41 - 2.57}{\sqrt{\frac{40019}{9900} + \frac{37151}{9900}}} = 3.0086$	
	Since <i>p</i> -value = $P(Z \ge 3.0086) \approx 0.0013121$ which is very small (< 0.002), we shall reject H ₀ at, say, 0.2% significance level and conclude there is <b>very strong evidence</b> that the mean time spent in hours for customers during the holiday season is greater than non-holiday season.	
(iii)	As the sample sizes are large, by Central Limit Theorem, the distributions of the <b>sample means</b> $\overline{T}_H$ and $\overline{T}_N$ are approximately normal. Hence there are <b>no implications</b> for the validity of the test even if the time spent of the two groups of customers are not normally distributed.	
(iv)	If the statistician's advice had been followed the test procedure would be a <u>paired-sample z-test</u> . In this procedure, the manager should randomly select 200 customers during the non-holiday season and survey them regarding their time spent in the mall and then survey the same 200 customers on their time spent during the holiday season.	
	This procedure will be more accurate because the pairing calculates the difference of the <b>same</b> customers. This will <b>eliminate any factors</b> that could <b>affect the time spent in the mall</b> which may vary from customer to customer.	

n	Suggest	ed Solution	15						
)				is independen	t from				
, 		• -	bought snac	-					
	H ₁ : They are not independent								
	Actual Frequency								
			Snacks	No Snacks	Total				
		Action	214	196	410				
	Туре	Comedy	545	445	<b>990</b>				
	of	Family	206	194	400				
	movie	Horror	95	105	200				
		Total	1060	940	2000				
	Exportor	d Frequenc	<b>K</b> 7						
	Expected	u Frequenc	y Snacks	No Snacks	Total				
		Action	217.3	192.7	410				
	Туре	Comedy	524.7	465.3	990				
	of	Family	212	188	400				
	movie	Horror	106	94	200				
		Total	1040	960	2000				
		Action	Snacks 0.050115	No Snacks 0.056513	Total 410				
	Туре	Comedy	0.78538	0.88564	990				
	of	Family	0.16981	0.19149	400				
	movie	Horror	1.1415	1.2872	200				
		Total	1040	960	2000				
	Reject n p-value = From the reject the and there type of r or not th When th means e	ull hypothe = 0.20633 e two tables e null hypo e is insuffic novie they ey boughts e sample si very cells v	thesis at 10% eient evidenc saw is not in snacks. ze increases vill increase	5.251 5.251, w 5 level of signi e to conclude to dependent from from 2000 to 4 by 2 times. So	ficance, that the m whether 4000, it				
		l		5.251, we reject					
	nypothes	sis. So the	conclusion o	f the test will	be changed				

	13
(iii)	We have to reject null hypothesis to support the
	manager's claim, i.e. $\chi^2_{cal} > 12.84$
	$\chi^2_{\text{cal}} = \sum \frac{\left(O_i - E_i\right)^2}{E_i} > 12.84 \Longrightarrow 0.00228385n > 12.84$
	$\Rightarrow$ <i>n</i> > 5622.0855
	so we take $n = 5623$ .

Qn	Suggested Solutions
10(i)	$\int_{0}^{\infty} \frac{k}{(x+1)^4}  \mathrm{d}x = 1$
	$-\frac{k}{3}\left[(x+1)^{-3}\right]_{0}^{\infty} = 1$
	$-\frac{k}{3}(0-1) = 1$
	k = 3 (shown)
	Let $F(x)$ be the cdf for $X$ $F(x) = P(X \le x)$
	$= \int_{0}^{x} \frac{k}{(t+1)^{4}}  \mathrm{d}t$
	$= -\frac{k}{3} \left[ (t+1)^{-3} \right]_{0}^{x}$
	$= -\left(\frac{1}{\left(x+1\right)^3} - 1\right)$
	$=1-\frac{1}{\left(x+1\right)^{3}}$
	$F(x) = \begin{cases} 0 & \text{for } x < 0, \\ 1 - \frac{1}{(x+1)^3} & \text{for } x \ge 0. \end{cases}$
	$P(X < x) = \frac{7}{8}$
	$F(x) = \frac{7}{8}$
	$1 - \frac{1}{(x+1)^3} = \frac{7}{8}$
	$(x+1)^3 = 8$ $x+1=2$
	x = 1
(ii)	FIX)
	3
	y=0

	15
(iii)	$E(X+1) = \int_{0}^{\infty} \frac{3(x+1)}{(x+1)^{4}} dx$
	$=\int_{0}^{\infty}\frac{3}{\left(x+1\right)^{3}}\mathrm{d}x$
	$=-\frac{3}{2}\left[(x+1)^{-2}\right]_{0}^{\infty}$
	$=\frac{3}{2}$
	$\mathbf{E}(X+1) = \frac{3}{2}$
	$\mathrm{E}(X) + 1 = \frac{3}{2}$
	$\mathbf{E}(X) = \frac{1}{2}$
(• )	
(iv)	$E((X+1)^{2}) = \int_{0}^{\infty} \frac{3}{(x+1)^{2}} dx$
	$=-3[(x+1)^{-1}]_{0}^{\infty}$
	= 3
	$Var(X+1) = E((X+1)^{2}) - [E(X+1)]^{2}$
	$\operatorname{Var}(X) = \frac{3}{4}$

The End