Chapter 20 NUCLEAR PHYSICS

me: CT:			
Data and Formulae		Duration: 30 minutes	
speed of light in free space	<i>C</i> =	3.00 × 10 ⁸ m s ^{−1}	
elementary charge	e =	1.60 × 10 ⁻¹⁹ C	
unified atomic mass constant	<i>u</i> =	1.66 × 10 ⁻²⁷ kg	
rest mass of electron	m _e =	9.11 × 10 ^{−31} kg	
rest mass of proton	<i>m</i> _p =	1.67 × 10 ^{−27} kg	
the Avogadro constant	N _A =	6.02 × 10 ²³ mol ⁻¹	
radioactive decay	<i>x</i> =	$x_{o} \exp(-\lambda t)$	
decay constant	λ =	ln2 / <i>t</i> _{1/2}	

Section A: Multiple Choice Questions (2 marks each) Fill in the answers in the boxes below.

1	2	3	4	5	6
D	С	D	С	D	С

- 1 The deviation of α -particles by thin metal foils through angles that range from 0° to 180° can be explained by
 - A scattering from free electrons.
 - **B** diffuse reflection from the metal surface.
 - **C** diffraction from the crystal lattice.
 - **D** scattering from small but heavy regions of positive charge.

Ans: D

2 A nucleus has a nucleon number *A*, a proton number *Z* and a binding energy *B*. The masses of the neutron and proton are m_n and m_p respectively, and *c* is the speed of light.

The mass of the nucleus is given by the expression

A
$$Am_n + Zm_p - \frac{B}{c^2}$$

B $Am_n + Zm_p + \frac{B}{c^2}$
C $(A-Z)m_n + Zm_p - \frac{B}{c^2}$
D $(A-Z)m_n + Zm_p + \frac{B}{c^2}$
Ans: C

3 The rest mass of the deuteron, ${}^{2}_{1}H$, is equivalent to an energy of 1876 MeV. The rest mass of a proton is equivalent to 939 MeV and the rest mass of a neutron is equivalent to 940 MeV.

A deuteron may disintegrate to a proton and a neutron if it

- **A** emits a γ -ray photon of energy 1 MeV.
- **B** captures a γ -ray photon of energy 1 MeV.
- **C** emits a γ -ray photon of energy 3 MeV.
- **D** captures a γ -ray photon of energy 3 MeV.

Ans: D

Since $\Sigma M_{\text{Reactants}} < \Sigma M_{\text{Products}}$, a photon must be absorbed whose energy is equal to the difference $(\Sigma M_{\text{Products}} - \Sigma M_{\text{Reactants}})c^2$.

4 At time *t*, a sample of radioactive substance contains *N* atoms of a particular nuclide. At time $(t + \Delta t)$, where Δt is a short period of time, the number of atoms of the nuclide is $(N - \Delta N)$.

Which expression is equal to the decay constant of the nuclide?

A
$$\frac{\Delta N}{N}$$
 B $\frac{\Delta N}{\Delta t}$ **C** $\frac{\Delta N}{N\Delta t}$ **D** $\frac{N\Delta N}{\Delta t}$
Ans: **C**
Decay constant λ = probability of decay per unit time
Probability of decay = $\frac{\Delta N}{N}$
Hence $\lambda = \frac{\Delta N}{N\Delta t}$
Activity A = rate of decay = $\frac{\Delta N}{\Delta t}$
Since $A = \lambda N$
=> $\lambda = \frac{A}{N} = \frac{\Delta N}{N\Delta t}$

OR

.....

5 The graph shows how the activities of two isotopes X and Y vary with time.

[1]

[2]

6 A detector of ionising radiation gives a background count rate of 24 per minute. A radioactive source is placed close to the detector and the reading is 532 counts per minute. What will be the reading after two half-lives of the source?

A 127 **B** 133 **C** 151 **D** 157

Ans: C

 $C = C_{o} e^{-(\ln 2) \left(\frac{t}{t_{1/2}}\right)}$ C = (532 - 24)e^{-(\ln 2)(2)} = 127 Hence detector reading = 127 + 24 = 151

Section B: Structured Questions (13 marks)

7 (a) Define *binding energy*.

It is defined as the energy needed just to separate completely the nucleons in the nucleus. / It is also defined as energy released when a nucleus is formed by putting all its constituent nucleons together

(b) A minimum energy Q is required to remove a neutron from a helium-4 nuclide to form a helium-3 nuclide. The following data is given:

Binding energy per nucleon of helium-4 nuclide = 6.8 MeVBinding energy per nucleon of helium-3 nuclide = 2.3 MeVMass of neutron = 1.0087 u

(i) Write the nuclear equation for this reaction. [1] ${}_{2}^{4}\text{He} \rightarrow {}_{2}^{3}\text{He} + {}_{0}^{1}n$

(ii) Calculate Q.

 $Q = \Sigma B.E._{reactants} - \Sigma B.E._{products}$ = 4(6.8) - 3(2.3)= 20.3 MeV

(iii) Hence calculate the difference in mass between the helium-3 and helium-4 nuclides. [2]

By Conservation of Energy, Mass Energy of Reactants + Q = Mass Energy of Products $(\Sigma M_{Products} - \Sigma M_{Reactants}) \times c^2 = Q$ $m(n) + m(He-3) - m(He-4) = \frac{Q}{c^2}$ $m(He-4) - m(He-3) = 1.0087(1.66 \times 10^{-27}) - \frac{(20.3 \times 10^6)(1.60 \times 10^{-19})}{(3.00 \times 10^8)^2}$ $= 1.64 \times 10^{-27} \text{ kg}$ 8 Strontium-90 decays with the emission of a β-particle to form Yttrium-90. The reaction is represented by the equation

$$^{90}_{38}$$
 Sr \rightarrow^{90}_{39} Y $+^{0}_{-1}$ e $+ 0.55$ MeV

The decay constant is 0.025 year⁻¹.

(a) Explain what is meant by the decay constant.

> The decay constant λ is the ratio of the number of decays per unit time to the number of remaining radioactive nuclei. (It represents the probability that a radioactive nucleus will decay in a unit time.)

- At the time of purchase of a Strontium-90 source, its activity is 3.7×10^{6} Bq. (b)
 - Calculate, for this sample of Strontium-90, (i)
 - 1. the initial number of atoms present,

$$A = \lambda N$$

3.7 × 10⁶ = $\frac{0.025}{365 \times 24 \times 3600} (N)$
 $N = 4.67 \times 10^{15}$

2. the initial mass.

Initial mass =
$$\frac{4.67 \times 10^{15}}{6.02 \times 10^{23}} \times 90 = 6.98 \times 10^{-7} \text{ g}$$

Determine the activity of the sample 5.0 years after purchase, expressing your (ii) answer as a fraction of the initial activity A_o . [2]

 $\boldsymbol{A} = \boldsymbol{A}_{o} \boldsymbol{e}^{-\lambda t}$ $\frac{A}{A_{\rm c}} = e^{-(0.025)(5.0)} = 0.882$ [2]

[1]

[2]