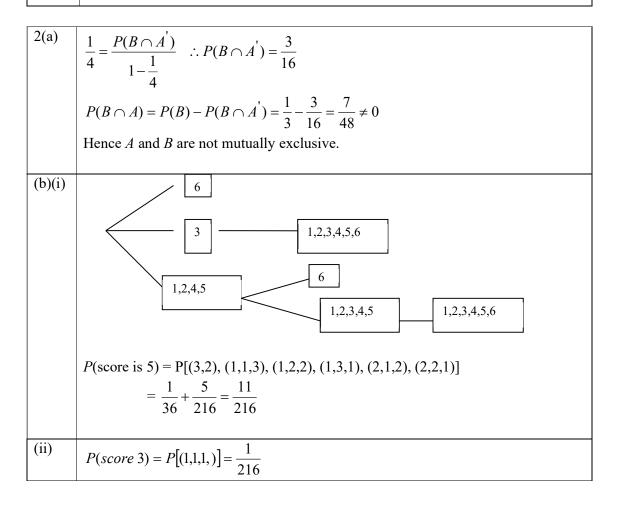
1(a)(i)	P(all three cards even) = $\frac{10}{20} \frac{9}{19} \frac{8}{18} = \frac{2}{19}$ or $= \frac{\binom{10}{3}}{\binom{20}{3}} = \frac{2}{19}$
(ii)	P(exactly one even) = $\frac{10}{20} \frac{10}{19} \frac{9}{18} \times \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \frac{15}{38}$ or $= \frac{\binom{10}{10}\binom{10}{2}}{\binom{20}{3}} = \frac{15}{38}$
(b)(i)	$P(B) = \frac{4}{20}\frac{16}{19} + \frac{16}{20}\frac{15}{19} = \frac{4}{5}$
(ii)	$P(A \cap B) = P(1st card \le 5 \& 2nd card \ge 5)$
	$= P(1st card = 5 \& 2nd card > 5) + P(1st card < 5 \& 2nd card \ge 5)$
	$=\frac{1}{20}\frac{15}{19} + \frac{4}{20}\frac{16}{19} = \frac{79}{380}$
(iii)	$P(B A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{79}{380}}{\frac{1}{4}} = \frac{79}{95}$



$$P(score \ 4) = P[(3,1), (1,1,2), (1,2,1), (2,1,1)] = \frac{9}{216}$$
$$P(score \ 4|score \ \le 5) = P\left(\frac{score \ 4 \cap score \ \le 5}{score \ \le 5}\right)$$
$$= P\left(\frac{score \ 4}{score \ \le 5}\right)$$
$$= \frac{9}{1+9+11} = \frac{3}{7}$$

3(i)	$ (p)(0.9) + (100 - p)(0.1) = 20 (p)(0.9) + (100 - p)(0.1) = 20 0.9p + 10 - 0.1p = 20 p = 12.5 The proportion of the residents infected is \frac{12.5}{100} = \frac{1}{8} or 12.5 %$
(ii)	P(has disease tested negative) = $\frac{P(\text{has disease \& tested negative})}{P(\text{tested negative})}$ $= \frac{0.1q}{0.1q + 0.9(100 - q)}$
(iii)	$= \frac{q}{900 - 8q}$ As the proportion of people getting infected (q) increases, the probability that a person has the disease given that he has been tested negative also increases as seen in the graph.
	So, the test is not effective.

4(i) P (it will take exactly *n* throws of the biased die to obtain a '6')
= P (the first (n - 1) throws are not '6' and the *n*th throw is a '6')
=
$$(1-p)^{n-1}p$$

(ii) P (it takes exactly 3 throws to obtain a '6') = $(1-p)^2 p = \frac{9}{64}$
 $p^3 - 2p^2 - p - \frac{9}{64} = 0$
 $p = 0.25, 0.4243, 1.326$ (from GC-Polynomial solver)

$$p = 0.4243 \approx 0.424 \text{ since } \frac{1}{4}
$$P (obtain a '5') = \frac{1 - 0.4243}{5} = 0.11514$$

$$P (They obtained the same number | they obtained a number larger than 4)$$

$$= \frac{P (they obtained the same number and each obtained a number greater than 4)}{P (they each obtained a number greater than 4)} = \frac{P (each obtained 5 or each obtained 6)}{P (each obtained 5 or 6)} = \frac{P(5, 5) + P(6, 6)}{[P (5 \text{ or } 6)]^2}$$

$$= \frac{(0.11514)^2 + (0.4243)^2}{(0.11514 + 0.4243)^2} = 0.664 \text{ (to } 3 \text{ sf)}$$
Alternative solution :
$$= \frac{P (each obtained 5 \text{ or each obtained } 6)}{P (each obtained 5 \text{ or each obtained } 6)} = \frac{P(5, 5) + P(6, 6)}{[P (5, 5) + P(6, 6) + 2 P (6, 5)]}$$

$$= \frac{(0.11514)^2 + (0.4243)^2}{(0.11514)^2 + (0.4243)^2 + 2(0.11514)(0.4243)}$$$$

5(i)	P(A wins a race) = 0.2(0.9) + 0.8(0.5) = 0.58
(ii)	P(A wins no more than twice) = 1-P(A wins all 3 matches) = $1-0.58^3=0.805$
(iii)	$\frac{P(A \text{ wins competition} A \text{ wins } 1^{\text{st}} \text{ race}) =}{P(A \text{ wins competition} \cap A \text{ wins } 1 \text{st } \text{ race})}{P(A \text{ wins } 1 \text{st } \text{ race})}$
	P(A wins competition ∩ A wins 1st race) = P(WWW) + P(WWLW) + P(WLWW) + P(WLLWW) + P(WWLLW) = $(0.58)^3 + (0.58)^3 (0.42)^2 + (0.58)^3 (0.42)^2 = 0.462$
	$(0.38)^{+}(0.38)^{-}(0.42)^{2} + (0.38)^{-}(0.42)^{-}^{-}^{-}^{-}^{-}^{-}^{-}^{-}^{-}^{-}$

6 (i) Let U and R be the events that United and Rover scored a goal with penalty kick respectively.
 P(match is still undecided after 1 round)

$$= P(R \cap U) + P(R' \cap U') = 0.8 \times 0.9 + 0.2 \times 0.1 = 0.74 = \frac{37}{50}$$

$$P(\text{United won in less than 3 rounds} | \text{United scores a goal in the first round})$$

$$= \frac{P(\text{United won in less than 3 rounds} | \text{United scores a goal in the first round}}{P(\text{United scores a goal in the first round})}$$

$$= \frac{(0.8 \times 0.1) + (0.8 \times 0.9 \times 0.8 \times 0.1)}{0.8} = 0.172$$
(ii) Let X be the random variable for the number of rounds played P(match is decided in at most n rounds) > 0.98
P(X \le n) > 0.98
P(X = 1) + P(X = 2) + P(X = 3) ++P(X = n) > 0.98
Hence $\frac{13}{50} + \frac{37}{50} (\frac{13}{50})^2 + \frac{37}{50} (\frac{13}{50} + \frac{37}{50})^{n-1} \frac{13}{50} > 0.98 \dots (**)$
 $\frac{13}{50} \left[1 + \frac{37}{50} + \left(\frac{37}{50}\right)^2 + \dots + \left(\frac{37}{50}\right)^{n-1} \right] > 0.98$
 $\left(\frac{37}{50}\right)^n < 0.02$
Hence $n > \frac{\ln 0.02}{\ln \frac{37}{50}} = 12.992$
Least $n = 13$
Alternative:
P(match is decided in at most n rounds) > 0.98
 $1 - P(\text{match is decided in more than n rounds}) > 0.98$
 $1 - P(\text{match is undecided in the first n rounds}) > 0.98$

7(a)(i)

$$P(A) = \frac{9}{36} = \frac{1}{4} \quad P(B) = \frac{4}{36} = \frac{1}{9} \quad P(A \cap B) = \frac{1}{36}$$
Since $P(A \cap B) = P(A) P(B)$, they are independent.
(ii)
 $A \cup B$ represents the event the card taken is either blue or numbered 1.
 $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{9}{36} + \frac{4}{36} - \frac{1}{36} = \frac{1}{3}$

(iii)	$P(A' B') = \frac{P(A' \cap B')}{P(B')} = \frac{1 - \frac{1}{3}}{\frac{32}{36}} = \frac{3}{4}$
(b)	<u>Method 1</u> : Required probability = $1 \times \frac{3}{35} \times \frac{2}{34} = \frac{3}{595}$ or 0.00504
	<u>Method 2</u> : Required probability $=\frac{4}{36} \times \frac{3}{35} \times \frac{2}{34} \times 9 = \frac{3}{595}$
	<u>Method 3</u> : Required probability = $\binom{4}{3} \left(\frac{1}{36}\right) \left(\frac{1}{35}\right) \left(\frac{1}{34}\right) 3! \times 9 = \frac{3}{595}$
	<u>Method 4</u> : Required probability = $\frac{9\begin{pmatrix}4\\3\\36\\3\end{pmatrix}}{\begin{pmatrix}36\\3\end{pmatrix}} = \frac{3}{595}$
(c)	<u>Method 1</u> : Required probability $=\frac{{}^{32}C_{20}}{{}^{36}C_{20}} = \frac{52}{1683} = 0.030897 = 0.0309$
	<u>Method 2</u> : Required probability $= \frac{32}{36} \times \frac{31}{35} \times \frac{30}{34} \times \frac{29}{33} \times \frac{28}{32} \times \dots \times \frac{17}{21} \times \frac{16}{20} \times \frac{15}{19} \times \frac{14}{18} \times \frac{13}{17}$ $= \frac{16}{36} \times \frac{15}{35} \times \frac{14}{34} \times \frac{13}{33} = 0.030897 = 0.0309$

8(a)	P(obtain a '6') = P(R6) + P(B6) = $\frac{1}{3}x\frac{1}{6}x2 = \frac{1}{9}$
(b)	P(score = 12) = 2[P(1,11) + P(3,9) + P(5,7) + P(2,10) + P(4,8)] + P(6,6)
	$= 2 x \frac{2}{18} x \frac{1}{18} x 5 + \frac{2}{18} x \frac{2}{18} = \frac{2}{27}$
(c)	$P(\text{score} = 11 \text{one of the die is blue}) = \frac{P(\text{score} = 11 \cap \text{one of the die is blue})}{P(\text{one of the die is blue})}$
	P(one of the die is blue)=P(RB) + P(WB) = $\frac{1}{3}x\frac{1}{2}x2x2 = \frac{2}{3}$
	$P(\text{score} = 11 \cap \text{one of the die is blue})$
	= P(R1,B10) + P(R3,B8) + P(R5,B6) + P(W1,B10) + P(W3,B8) +
	P(W5,B6) + P(W7,B4) + P(W9,B2)

$$= \frac{1}{18} \times \frac{1}{12} \times 2 \times 8 = \frac{2}{27}$$

$$\therefore \text{ Required probability} = \frac{2}{27} \div \frac{2}{3} = \frac{1}{9}$$

9(i)	P(C,C or	N,N) + P(M,M or E,E) = $2 \times \left(\frac{2}{12} \cdot \frac{1}{11}\right) + 2 \times \left(\frac{3}{12} \cdot \frac{2}{11}\right) = \frac{4}{33}$
(ii)	P(C, C', C	C) + P(C', C, C) + P(C', C', C) = 2 × $\left(\frac{2}{12} \cdot \frac{10}{11} \cdot \frac{1}{10}\right) + \left(\frac{10}{12} \cdot \frac{9}{11} \cdot \frac{2}{10}\right) = \frac{1}{6}$
(iii)	$\frac{3}{12} \cdot \frac{2}{11} \cdot \frac{3}{10}$	$\frac{1}{0} = \frac{3}{220}$
(iv)	$\frac{3}{220} \times 3! =$	$=\frac{9}{110}$
	Let $p = P$	$(\leq n \text{ more cards are drawn to get an N})$
	n	p
	1	$\frac{2}{10}$ < 0.75
	2	$\frac{2}{10} + \left(\frac{8}{10} \cdot \frac{2}{9}\right) = \frac{17}{45} < 0.75$
	3	$\frac{17}{45} + \left(\frac{8}{10} \cdot \frac{7}{9} \cdot \frac{2}{8}\right) = \frac{8}{15} < 0.75$
	4	$\frac{8}{5} + \left(\frac{8}{10} \cdot \frac{7}{9} \cdot \frac{6}{8} \cdot \frac{2}{7}\right) = \frac{2}{3} < 0.75$
	5	$\frac{2}{3} + \left(\frac{8}{10} \cdot \frac{7}{9} \cdot \frac{6}{8} \cdot \frac{5}{7} \cdot \frac{2}{6}\right) = \frac{7}{9} > 0.75$
	Hence, th	e least value of $n = 5$

10(a) A and B are mutually exclusive.
A and C are indept, i.e.
$$P(A \cap C) = P(A) P(C)$$

 $P(A) = \frac{1}{5}, P(B) = \frac{1}{10}, P(A \cup C) = \frac{7}{15}$
 $P(B \cup C) = \frac{23}{60}$
 $P(A \cup B) = \frac{1}{5} + \frac{1}{10} = \frac{3}{10}$

	$P(A \cup C) = P(A) + P(C) - P(A \cap C)$
	$\frac{7}{15} = \frac{1}{5} + P(C) - \frac{1}{5}P(C)$
	$P(C) = \frac{4}{15} \times \frac{5}{4} = \frac{1}{3}$
	15 7 5
	: $P(A \cap C) = \frac{1}{5}x\frac{1}{3} = \frac{1}{15}$
	$P(B \cup C) = P(B) + P(C) - P(B \cap C)$
	$\frac{23}{60} = \frac{1}{10} + \frac{1}{3} - P(B \cap C)$
	00 10 5
	$P(B \cap C) = \frac{1}{20}$
	P(B) x P(C) = $\frac{1}{10}$ x $\frac{1}{3} = \frac{1}{30} \neq$ P(B \cap C)
	Therefore, B and C are not independent.
(b)(i)	P(1 st vase is flawless) = $\left(\frac{1}{2}\right)\left(\frac{2}{3}\right) + \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{7}{12}$
(ii)	P(batch from X 1 st vase is flawless)
	_ P(batch from X \cap 1 st vase is flawless) _ (1)(2). 7 _ 4
	$=\frac{P(\text{batch from }X \cap 1\text{ st vase is flawless})}{P(1\text{ st vase is flawless})} = \left(\frac{1}{2}\right)\left(\frac{2}{3}\right) \div \frac{7}{12} = \frac{4}{7}$
(iii)	P(2 nd vase is flawless 1 st vase is flawless)
	P(both vases are flawless) $\left[\begin{pmatrix} 1 \\ 2 \end{pmatrix}^2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}^2 \right] = 725$
	$=\frac{P(\text{both vases are flawless})}{P(1\text{st vase is flawless})} = \left[\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^2 + \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^2\right] \div \frac{7}{12} = \frac{25}{42}$

$$\begin{array}{c|c}
11(i) \\
P(2 \text{ balls are white}) = \binom{2}{2} \div \binom{5}{2} = \frac{1}{10} \\
(ii) \\
P(toss once) = 1 - P(1R, 1W) = 1 - \binom{3}{1}\binom{2}{1} \div \binom{5}{2} = 1 - \frac{6}{10} = \frac{2}{5} \\
(iii) \\
P(X = 5) = P(2,3) + P(1,4) + P(5) = \frac{3}{5}x\frac{1}{6}x\frac{1}{6}x2x2 + \frac{3}{10}x\frac{1}{6} = \frac{7}{60} \\
(iv) \\
P(X = 2|toss die once) = \frac{P(X = 2 \ \cap \ toss die once)}{P(toss die once)} \\
\end{array}$$

$$P(X = 2 \ \cap \text{ toss die once}) = P(2W,1) + P(1) = \frac{1}{10} x \frac{1}{6} + \frac{3}{10} x \frac{1}{6} = \frac{1}{15}$$

$$P(\text{toss die once}) = \frac{2}{5}$$

$$P(X = 2|\text{toss die once}) = \frac{P(X = 2 \ \cap \text{ toss die once})}{P(\text{toss die once})} = \frac{\frac{1}{25}}{\frac{2}{5}} = \frac{1}{6}$$

$$(v) \qquad P(2 \text{ balls are white } | X = 2) = \frac{P(2 \text{ balls are white and } X = 2)}{P(X = 2)}$$

$$P(X = 2) = P(2W,1) + P(2) + P(1,1) = \frac{1}{10} x \frac{1}{6} + \frac{3}{10} x \frac{1}{6} + \frac{3}{5} x \frac{1}{6} x \frac{1}{6} = \frac{1}{12}$$

$$P(2 \text{ balls are white and } X = 2) = P(2W,1) = \frac{1}{60}$$
Required prob. = $\frac{1}{60} \div \frac{1}{12} = \frac{1}{5}$

12(a)(i)	P(team wins 2 matches) = $\left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^2 \frac{4!}{2!2!} = \frac{3}{8}$
(ii)	P(team scores 4 points) = P(2D, 1L, 1W) + P(4D) =
	$\left(\frac{1}{4}\right)^{2} \left(\frac{1}{4}\right) \left(\frac{1}{2}\right) \frac{4!}{2!} + \left(\frac{1}{4}\right)^{4} = \frac{25}{256}$
(b)(i)	$P(A) = \frac{1}{2}, P(A \cup B) = 0.65$
	$P(A \cup B) = P(A) + P(B)$
	P(B) = 0.65 - 0.50 = 0.15
(ii)	$P(B A) = \frac{P(B \cap A)}{P(A)} = 0.4$
	$P(B \cap A) = 0.4(0.5) = 0.2$
	$\therefore P(A \cup B) = P(A) + P(B) - P(B \cap A)$
	0.65 = 0.5 + P(B) - 0.2
	P(B) = 0.35
	Since $P(B A) \neq P(B)$, thus A and B are not independent.

$$\begin{vmatrix} 13(i) \\ P(getting a matched pair of socks) = \frac{\binom{2}{2} + \binom{4}{2} + \binom{3}{2}}{\binom{9}{2}} = \frac{5}{18} \\ \hline (ii) \\ P(getting a matched pair in 3 socks) \\ = 1 - P(all 3 socks are of different colours) = 1 - \frac{\binom{2}{1}\binom{4}{1}\binom{3}{1}}{\binom{9}{3}} = \frac{5}{7} \\ \hline (iii) \\ P(3^{rd} sock does not give match/1^{st} 2 not matched) = \frac{\binom{2}{1}\binom{4}{1}\binom{3}{1}}{\binom{9}{3}} \div (1 - \frac{5}{18}) = \frac{36}{91} \\ \hline \end{cases}$$

14(i)	$P(C) = p \times 1 + (1-p) \times \frac{1}{5}$
(ii)	K' \cap C represents the event where Alice does not know the correct answer but she answers correctly
(iii)	$P(K' C) = \frac{P(K' \cap C)}{P(C)} = \frac{1}{16} \qquad \frac{(1-p) \times \frac{1}{5}}{p \times 1 + (1-p) \times \frac{1}{5}} = \frac{1}{16} \text{ solving, get } p = 0.75.$
(iv)	When $p = 0.3$, P(C) = 0.3+0.7×0.2=0.44 P(3 consecutive correct 3 correct answers) = $\frac{(0.44)^3(0.56)^2 \times 3}{(0.44)^3(0.56)^2 \times C_3^5} = \frac{3}{10}$
(v)	P(negative score) = P(0 correct or 1 correct) = $(0.56)^5 + C_1^5 (0.56)^4 (0.44) = 0.271$

15(i)P(Chris is late in a day) =
$$\frac{4}{5} + \frac{2}{5} - (\frac{4}{5})(\frac{2}{5}) = \frac{22}{25}$$
Let X be the number of days Chris is late out of 4 days. X~B(4, $\frac{22}{25}$).P(Chris was late exactly thrice in a week | Chris was late on Mon)= P(Chris was late twice in the remaining four days of the week) = P(X = 2) \approx 0.0669(ii)P(Chris was delayed at A | Chris was late)= P(Chris was delayed at A)/P(Chris was late) $\frac{4}{5}$ = P(Chris was delayed at A)/P(Chris was late)= P(Chris was delayed at B | he was delayed at exactly one stop)= P(Chris was delayed at Stop B only)/P(delayed at exactly one stop)= $\frac{(\frac{1}{5})(\frac{2}{5})}{(\frac{4}{5})(\frac{2}{5}) + (\frac{1}{5})(\frac{2}{5})} = \frac{1}{7}$

16(a)(i)	Necessarily false. $P(A B) = 0 \neq P(A)$
(ii)	Necessarily false. $P(A \cap B) = P(A)P(B) \neq 0$
(b)(i)	Required probability = $0.4p + 0.3 \times \frac{1}{2}p + 0.2 \times \frac{1}{4}p + 0.1 \times \frac{1}{8}p = 0.6125p \text{ or } \frac{49}{80}p$
(ii)	Required probability $= \frac{\left(0.4p + 0.3 \times \frac{1}{2}p + 0.1 \times \frac{1}{8}p\right)\left(\frac{2}{9} \times \frac{1}{4}p\right) + \left(\frac{2}{10} \times \frac{1}{4}p\right)\left(\frac{1}{9} \times \frac{1}{4}p\right)}{0.6125p}$ $= 0.0533p \text{ or } \frac{47}{882}p$

(iii)	$1 - \frac{49}{80} p \ge \frac{7}{10}$
	$\frac{49}{80}p \le \frac{3}{10}$
	0

17(i)	$0.2 \times 0.02 + 0.7 \times 0.05 + 0.1 \times 0.1 = 0.049$
(ii)	P(slept before 11p.m. and not late for school) / P(not late for school) = $\frac{0.2 \times 0.98}{1 - 0.049}$ = 0.20610
(iii)	$(1 - 0.049)^5 = 0.77786 = 0.778 (3 \text{ s.f.})$
(iv)	Let X be a random variable denoting the number of weeks such that the student is on time for school every day in that week. $X \sim B(n, 0.77786)$ Given, $P(X \le 8) \le 0.14$ From G.C., $n = 14$

18(i) P(first red bead is obtained on or before the 5th draw)

$$= \frac{2}{5} + \frac{3}{5} \cdot \frac{2}{5} + \left(\frac{3}{5}\right)^2 \left(\frac{2}{5}\right) + \left(\frac{3}{5}\right)^3 \left(\frac{2}{5}\right) + \left(\frac{3}{5}\right)^4 \left(\frac{2}{5}\right) \text{ or } \sum_{r=0}^4 \left(\frac{3}{5}\right)^r \left(\frac{2}{5}\right)$$

$$= 0.922$$
Or $1 - P(\text{no red on first 5 draws}) = 1 - \left(\frac{3}{5}\right)^5 = 0.922$
(ii) P(obtaining a first green bead on the 8th draw given that no green bead has been obtained after 5 draws) = P(red on 6th and 7th draws and green on 8th draw)=

$$\left(\frac{2}{5}\right)^2 \left(\frac{3}{5}\right) = 0.096$$
(iii) P(exactly r draws are required for beads of both colours to be obtained)

$$= \left(\frac{2}{5}\right)^{r-1} \left(\frac{3}{5}\right) + \left(\frac{3}{5}\right)^{r-1} \left(\frac{2}{5}\right)$$

$$= \left(\frac{2}{5}\right)^{r-2} \left(\frac{6}{25}\right) + \left(\frac{3}{5}\right)^{r-2} \left(\frac{6}{25}\right)$$

$$= \left(\frac{6}{25}\right) \left[\left(\frac{2}{5}\right)^{r-2} + \left(\frac{3}{5}\right)^{r-2} \right], \text{ where } r = 2,3,4,...$$
(iv) P(first obtaining beads of different colours after 5 or more draws)
$$= \left(\frac{6}{25}\right) \left[\left(\left(\frac{2}{5}\right)^3 + \left(\frac{3}{5}\right)^3\right) + \left(\left(\frac{2}{5}\right)^4 + \left(\frac{3}{5}\right)^4\right) + ... \right]$$

$$= \left(\frac{6}{25}\right) \left[\left(\frac{2}{5}\right)^3 + \left(\frac{3}{5}\right)^3 \right]$$

$$= 0.155$$
Or
P(first obtaining beads of different colours after 5 or more draws)
$$= P(\text{obtaining same colour in the first 4 draws)}$$

$$= P(\text{obtaining same colour in the first 4 draws)}$$

$$= P(\text{first 4 red beads}) + P(\text{first 4 green beads})$$

$$= \left(\frac{2}{5}\right)^4 + \left(\frac{3}{5}\right)^4 = 0.155$$
(v)
E(no. of draws to first obtain beads of different colour)
$$= \sum_{r=2}^{\infty} r \left(\frac{6}{25}\right) \left[\left(\frac{2}{5}\right)^{r-2} + \left(\frac{3}{5}\right)^{r-2} \right] = 3.17 \text{ (by GC)}$$

19(i)	$P(A \cap B) = P(rise, rise, fall) + P(rise, fall, fall)$
	$= (0.1 \times 0.7 \times 0.3) + (0.1 \times 0.3 \times 0.9) = 0.048$
(ii)	P(<i>B</i>)
	$= P(A \cap B) + P(A' \cap B)$
	= 0.048 + P(fall, fall, fall) + P(fall, rise, fall)
	$= 0.048 + (0.9 \times 0.9 \times 0.9) + (0.9 \times 0.1 \times 0.3) = 0.804$
(iii)	$P(A' \cup B) = 1 - [P(A) - P(A \cap B)]$
	=1-[0.1-0.048]=0.948
(iv)	$P(B A) = \frac{P(A \cap B)}{P(A)} = \frac{0.048}{0.1} = 0.48$

(v)	Since $[P(B) = 0.804] \neq [P(B A) = 0.48] \therefore A \text{ and } B \text{ are not independent}$

20(i)	$P(A \cup B) = P(B) + P(A \cap B')$
	P(B) = 0.85 - 0.3 = 0.55
(ii)	$P(A \cap B) = P(A) - P(A \cap B')$
	$P(A \cap B) = 0.45 - 0.3 = 0.15$
(iii)	$P(A B') = \frac{P(A \cap B')}{1 - P(B)}$
	$P(A B') = \frac{0.3}{1 - 0.55} = \frac{2}{3}$
(iv)	A and C are independent,
	$\Rightarrow A \text{ and } C' \text{ are independent.}$
	$P(A \cap C') = P(A) \times P(C')$
	$P(A \cap C') = 0.45 \times (1 - 0.6) = 0.18$
1	

21(i)	Let event A be "watched 'Jogging man'
	Let event B be "watched 'Voice of me'
	Given $P(A) = 0.7$, $P(B) = 0.6$, $P(A B') = 0.4$,
	$P(A B') = \frac{P(A \cap B')}{P(B')} = 0.4$
	$P(A \cap B') = 0.4(0.4) = 0.16$
	$P(A \cap B) = P(A) - P(A \cap B') = 0.7 - 0.16 = 0.54$
(ii)	$\mathbf{P}(A' \cap B) + \mathbf{P}(A \cap B') = (\mathbf{P}(B) - \mathbf{P}(A \cap B)) + \mathbf{P}(A \cap B')$
	=(0.6-0.54)+0.16=0.22
(iii)	$P(B \mid A') = \frac{P(B \cap A')}{P(A')} = \frac{0.06}{0.3} = 0.2$
	Since $P(A) = 0.7 \neq P(A B') = 0.4$, the two events are not independent

22(i)	3 3	<i>n</i> -3	4	4n - 3
	$\overline{n \cdot n+1}$	n	n+1	$\overline{n(n+1)}$

(ii)
$$\frac{\frac{3}{n} \cdot \frac{3}{n+1}}{\frac{4n-3}{n(n+1)}} = \frac{9}{4n-3}$$

Number of arrangements without restrictions = $\frac{9!}{2!2!3!}$ Required probability = $\frac{8!}{2!3!} \div \frac{9!}{2!2!3!} = \frac{2}{9}$
No. of ways to 'slot' in 'red beads' and 'green beads' = ${}^{6}C_{4}\frac{4!}{2!2!}$
Required probability = $\frac{5!}{3!} {}^{6}C_{4} \frac{4!}{2!2!} \div \frac{9!}{2!2!3!} = \frac{5}{42}$
P (2 'red beads together' and 2 'green beads together') $=\frac{7!}{3!} \div \frac{9!}{2!2!3!} = \frac{1}{18}$
Required probability = $P(A \cup B)$
$= P(A) + P(B) - P(A \cap B)$
$= \frac{2}{9} + \frac{2}{9} - \frac{1}{18} = \frac{7}{18}$
Number of arrangements without restrictions = $\frac{8!}{2(2!2!3!)}$
Required probability = $\frac{6!}{2(3!)2!} \div \frac{8!}{2(2!2!3!)2!} = \frac{1}{14}$

24(i)	Probability
	= $P(\text{drawing from box A,B,A,B,A,B})$
	=P(drawing R,W,R,W,R) = $\left(\frac{5}{10}\right)\left(\frac{6}{10}\right)\left(\frac{4}{9}\right)\left(\frac{5}{9}\right)\left(\frac{3}{8}\right) = \frac{1}{36}$
(ii)	Let event E be the event that he drew from box B on the fourth draw.
	Let event F be the event that he has not drawn from box C from the first to his sixth
	draw, including the sixth draw.
	$P(F \cap E) = \frac{1}{36}$

$$P(E)$$

$$= P(\text{drawing from A,B,C,B or A,B,A,B or A,C,A,B)}$$

$$= P(\text{drawing R,R,W or R,W,R or W,R,R)}$$

$$= \left(\frac{5}{10}\right) \left(\frac{4}{10}\right) \left(\frac{7}{10}\right) + \left(\frac{5}{10}\right) \left(\frac{6}{10}\right) \left(\frac{4}{9}\right) + \left(\frac{5}{10}\right) \left(\frac{3}{10}\right) \left(\frac{5}{9}\right) = \frac{107}{300}$$

$$P(F|E)$$

$$= \frac{P(F \cap E)}{P(E)} = \frac{P(\text{drawing from box A, B, A, B, A, B)}}{P(\text{drawing from box B on fourth draw})} = \frac{\frac{1}{36}}{\frac{107}{300}} = \frac{25}{321}$$

25(c)
Total probability =
$$\left(\frac{2}{7}\right)\left(\frac{1}{6}\right) + \left(\frac{5}{7}\right)\left(\frac{2}{7}\right)\left(\frac{1}{6}\right) + \left(\frac{5}{7}\right)^2\left(\frac{2}{7}\right)\left(\frac{1}{6}\right) + \dots$$

= $\left(\frac{2}{7}\right)\left(\frac{1}{6}\right)\left[1 + \left(\frac{5}{7}\right) + \left(\frac{5}{7}\right)^2 + \dots\right]$
= $\left(\frac{1}{21}\right)\left[\frac{1}{1-\left(\frac{5}{7}\right)}\right] = \frac{1}{6}$

26(i) Let
$$P(A) = \alpha$$
 and $P(B) = \beta$.
 $P(A) + P(B) = P(A \cup B) + P(A \cap B)$
 $= 0.55 + 0.05 = 0.6$
 $\Rightarrow \alpha + \beta = 0.6 \cdots (1)$
Since A and B are independent,
 $P(A \cap B) = P(A) P(B)$
 $\Rightarrow \alpha\beta = 0.05$
i.e. $\alpha = \frac{0.05}{\beta} \cdots (2)$
Sub (2) into (1):
 $\frac{0.05}{\beta} + \beta = 0.6$
 $\beta^2 - 0.6\beta + 0.05 = 0$
 $\beta = 0.5$ or $\beta = 0.1 \cdots (3)$
Sub (3) into (1):

	$\alpha = 0.1$ or $\alpha = 0.5$
	Since $\alpha < \beta$, $P(A) = 0.1$ and $P(B) = 0.5$
(ii)	Method 1
	$P(A'\cup B' C)$
	$=1-P((A'\cup B')' C)$
	$=1-P(A\cap B \mid C)$
	$-1 - P(A \cap B \cap C)$
	$=1-\frac{P(A\cap B\cap C)}{P(C)}$
	$=1-\frac{P(A\cap B\cap C)}{0.5}=0.95$
	$\therefore P(A \cap B \cap C) = 0.05 \times 0.5 = 0.025.$
	Method 2
	$P(A'\cup B' C) = \frac{P((A'\cup B')\cap C)}{P(C)} = 0.95$
	$P((A' \cup B') \cap C) = 0.95 \times 0.5 = 0.475$
	$P(A \cap B \cap C) = P(C) - P((A' \cup B') \cap C) = 0.5 - 0.475 = 0.025$
(iii)	Since $P(A \cap C) \ge P(A \cap B \cap C) = 0.025 > 0$, A and C are not mutually exclusive.

27(a)(i)

$$P(R=3) = \frac{\binom{15}{3}\binom{10}{5}}{\binom{25}{8}} = 0.10601 = 0.106 (3 \text{ s.f}) (\text{Shown})$$
Alternatively: Probability method

$$P(R=3) = \binom{15}{25}\binom{14}{24}\binom{13}{23}\binom{10}{22}\binom{9}{21}\binom{8}{20}\binom{7}{19}\binom{6}{18}\binom{8!}{3!5!}$$

$$= 0.10601 = 0.106 (3 \text{ s.f}) (\text{Shown})$$
(ii)

$$P(R=r) > P(R=r+1)$$

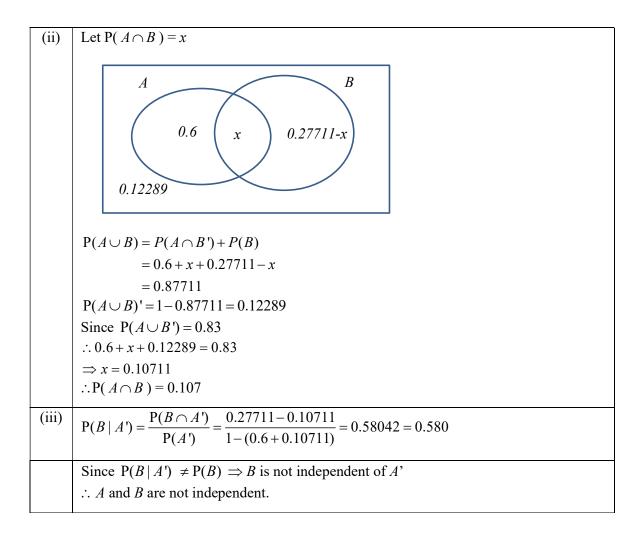
-	$\frac{\binom{15}{r}\binom{10}{8-r}}{\binom{25}{2}} > \frac{\binom{15}{r+1}\binom{10}{7-r}}{\binom{25}{2}}$
	$\binom{(8)}{(15)} \binom{(10)}{(8-r)} > \binom{(15)}{(r+1)} \binom{(10)}{(7-r)}$
-	$\frac{15!}{r!(15-r)!} \frac{10!}{(8-r)!(2+r)!} > \frac{15!}{(r+1)!(14-r)!} \frac{10!}{(7-r)!(3+r)!}$
	(r+1)!(14-r)!(7-r)!(3+r)! > r!(15-r)!(8-r)!(2+r)! (shown)
-	$\frac{(r+1)!(14-r)!(7-r)!(3+r)!}{r!(15-r)!(8-r)!(2+r)!} > 1$
	$\Rightarrow \frac{(r+1)(r+3)}{(15-r)(8-r)} > 1$
((r+1)(r+3) > (15-r)(8-r) $r^{2} + 4r + 3 > 120 - 23r + r^{2}$
i	$r^2 + 4r + 3 > 120 - 23r + r^2$
	27 <i>r</i> > 117
	<i>r</i> > 4.33,
i	r = 5, 6, 7, 8
ł	But $P(R=5) > P(R=6) > P(R=7) > P(R=8)$ since given $P(R=r) > P(R=r+1)$,
	Therefore $r = 5$ since P(R=5) is the highest probability among all these values. Similarly, P($R = r$) < P($R = r + 1$) \Rightarrow $r < 4.333 \Rightarrow r = 0,1,,4$
ł	Hence, $P(R = 0) \le P(R = 1) \le \le P(R = 4) \le P(R = 5)$.]
(question defined "The most probable number of red balls drawn is denoted by r .")

28(i) <u>Method 1</u> Total number of possible codes = $26^2 \times 10^3 = 676000$ Total number of codes with three different digits and two different letters= $= {}^{26}P_2 \times {}^{10}P_3 = 46800$ Required prob= $\frac{46800}{676000} = \frac{9}{13}$ <u>Method 2</u> Required prob= $1 \times 1 \times \frac{9}{10} \times \frac{8}{10} \times \frac{25}{26} = \frac{9}{13}$

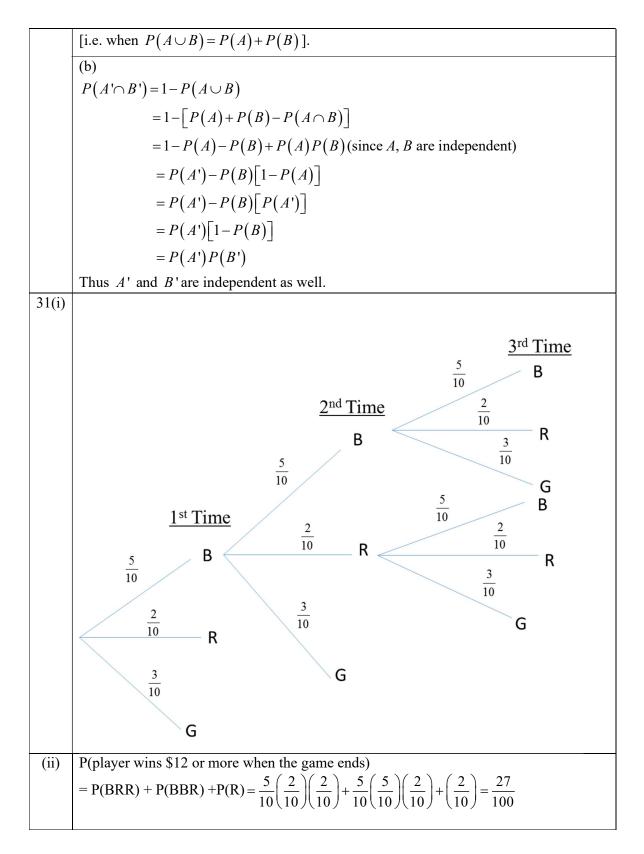
(ii)	Method 1
	Total number of palindromes = $26 \times 10 \times 10 \times 1 \times 1 = 2600$
	P(code is a Palindrome code) = $\frac{2600}{676000} = \frac{1}{260}$
	$1(code is a raindrome code) = \frac{1}{676000} = \frac{1}{260}$
	Method 2
	P(code is a Palindrome code) = $1 \times 1 \times 1 \times \frac{1}{10} \times \frac{1}{26} = \frac{1}{260}$
(iii)	Method 1
	P(2 and 3 used in code code is palindrome)
	$= \frac{P(\text{code is palindrome and contains 2 and 3})}{P(\text{code is palindrome})}$
	- $P(code is palindrome)$
	$2\left(1\times\frac{1}{2}\times\frac{1}{2}\times\frac{1}{2}\times\frac{1}{2}\times\frac{1}{2}\right)$
	$=\frac{P(232) + P(323)}{(1/260)} = \frac{2\left(1 \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{26}\right)}{(1/260)} = 0.02$
	(1/260) $(1/260)$
	Method 2
	P(2 and 3 used in code code is palindrome)
	$=\frac{\text{no of palindrome codes with 2 and 3}}{\text{number of palindrome codes}}$
	$= \frac{\text{no of palindrome with (_232_) + no of palindrome with (_323_)}}{\text{mo of palindrome with (_323_)}}$
	$=\frac{10001 \text{ painteronic with } (252 \text{ j}) + 10001 \text{ painteronic with } (252 \text{ j})}{2600}$
	$=\frac{26+26}{2600}=\frac{1}{50}$
(iv)	Need to find the probability of a code containing 2 and 3.
	Case 1. Cade contains 2 and 2 only
	Case 1: Code contains 2 and 3 only. No. of codes with 2 and 2 and $2 = 2\sqrt{2}G^2 + \frac{3}{2}G^2 = 4056$
	No. of codes with 2 and 3 only = $2 \times 26^2 \times {}^3C_2 = 4056$
	Case 2: Code contains 2, 3 and 1 other number
	No of codes with 2, 3 and 1 other number ${}^{8}C$ $\times 21 \times 26^{2}$ = 22448
	$= {}^{8}C_{1} \times 3 \times 26^{2} = 32448$
	Prob (code contains 2 and 3) = $\frac{32448 + 4056}{676000} = 0.054 \neq 0.02$
	Thus, the events are not independent.

29	Given $P(A B') = 0.83$
(i)	

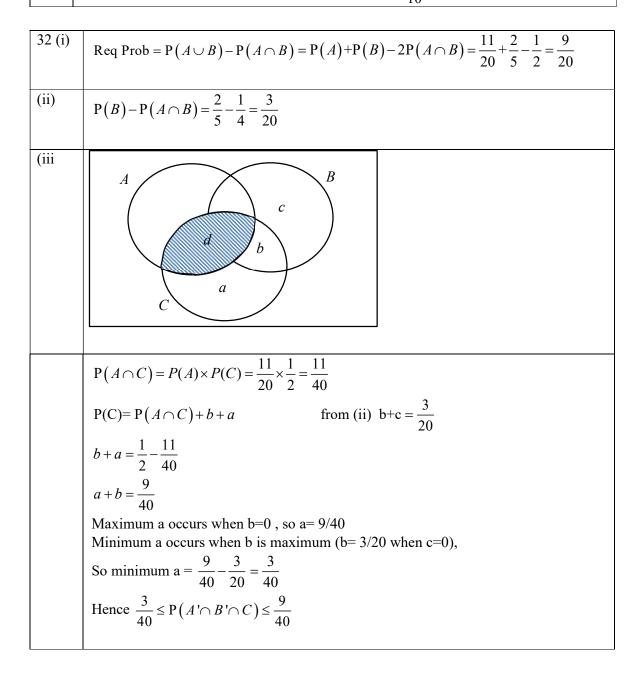
$$\Rightarrow \frac{P(A \cap B')}{P(B')} = 0.83$$
$$\Rightarrow \frac{0.6}{1 - P(B)} = 0.83$$
$$\Rightarrow P(B) = 1 - 0.72289 = 0.27711 = 0.277$$

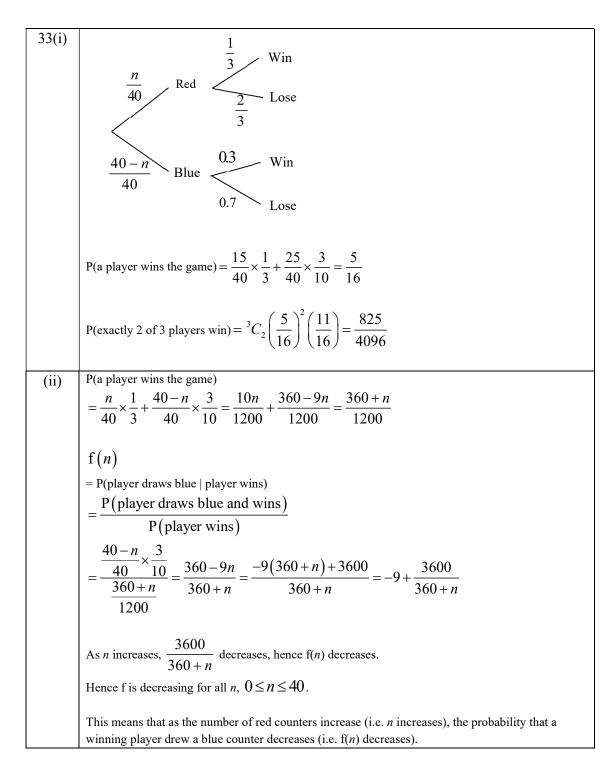


30	(a)(i)
	By considering $P(A \cup B) \le 1$
	$P(A \cap B') + P(A \cap B) + P(B \cap A') \le 1$
	Let $P(A \cap B) = c$
	Then we have
	$a - c + c + b - c \le 1$
	$c \ge a + b - 1$
	Note: Can also use
	$P(A \cup B) = P(A) + P(B) - P(A \cap B) \le 1 \Longrightarrow a + b - c \le 1 \Longrightarrow c \ge a + b - 1$
	Thus, minimum possible value of $P(A \cap B)$ is $a+b-1$.
	(a)(ii)
	when $P(A) = 0.6$ and $P(B) = 0.2$, [note that $P(A) + P(B) < 1$].
	$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Longrightarrow P(A \cap B) = 0.8 - P(A \cup B)$
	minimum possible value of $P(A \cap B)$ is 0, i.e., A and B are disjoint.

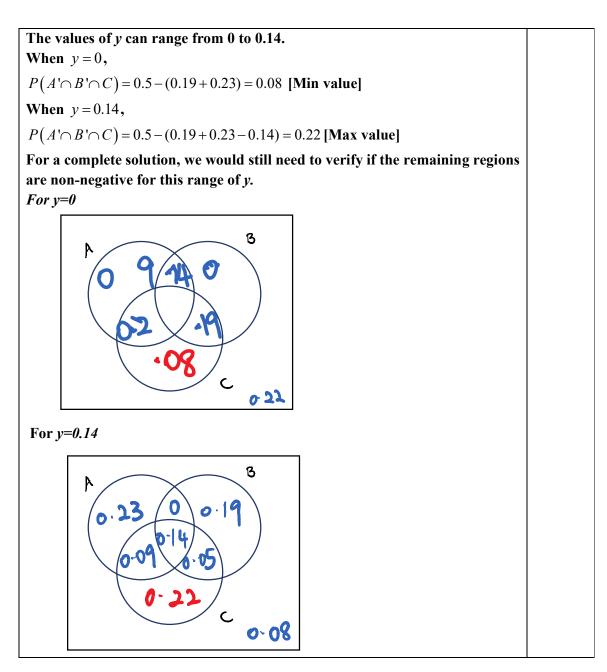


(iii)	P (second spin lands on a blue sector the player wins \$12 or more when the game
	ends)
	$=\frac{\left(\frac{5}{10}\right)\left(\frac{5}{10}\right)\left(\frac{2}{10}\right)}{0.27}=\frac{5}{27}$
(iv)	P (no spins result on a red sector and wins nothing when game ends)
	3
	$=\frac{3}{10} + \left(\frac{5}{10}\right) \left(\frac{3}{10}\right) + \left(\frac{5}{10}\right)^2 \left(\frac{3}{10}\right) + \left(\frac{5}{10}\right)^3 \left(\frac{3}{10}\right) + \dots = \frac{\overline{10}}{1 - \frac{5}{10}} = \frac{3}{5}$
	10

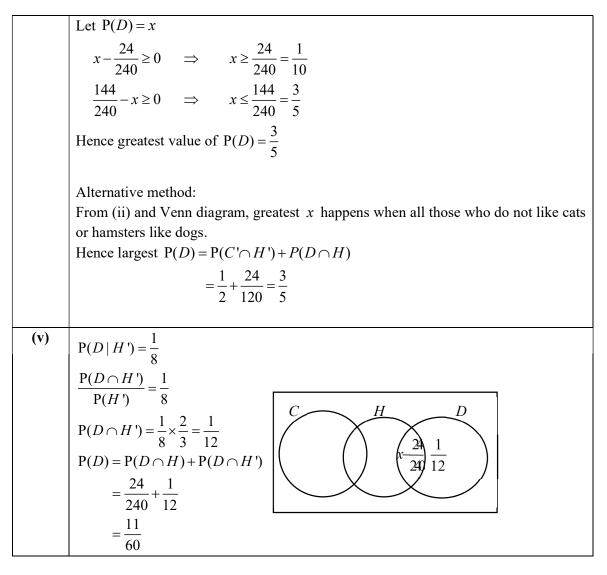




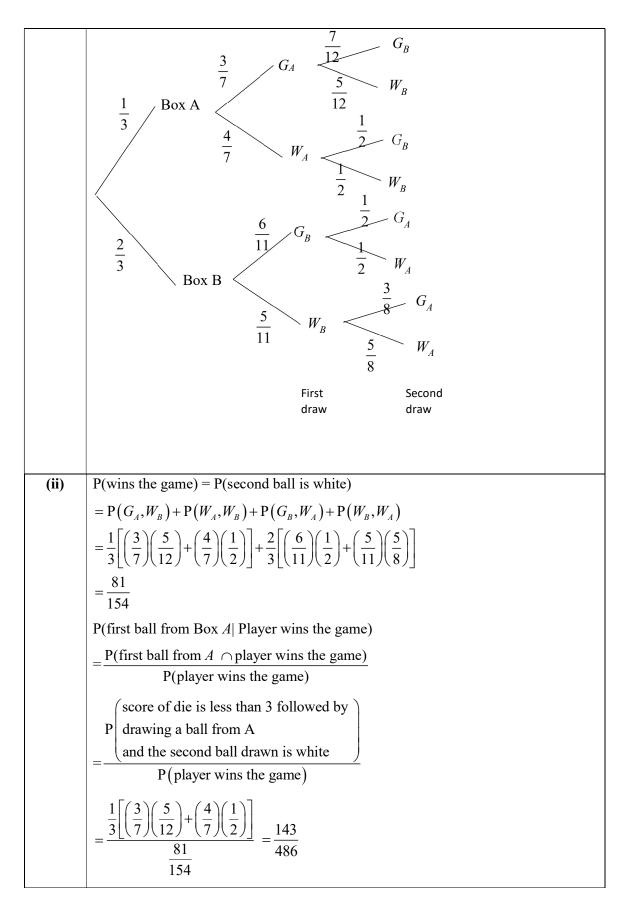
34. Suggested solution		
(i)		
A		
Let $P(A \cap B) = x$.		
$P(B A) = \frac{7}{23}$		
$\Rightarrow \frac{P(A \cap B)}{P(A)} = \frac{7}{23} \Rightarrow \frac{x}{0.32 + x} = \frac{7}{23}$		
$\Rightarrow 23x = 7x + 2.24 \Rightarrow x = 0.14$		
(ii) $P(A B) = \frac{7}{19}$		
$\Rightarrow \frac{P(A \cap B)}{P(B)} = \frac{7}{19}$		
$\Rightarrow \frac{0.14}{P(B)} = \frac{7}{19}$		
$\Rightarrow P(B) = 0.38$		
$P(A \cup B) = P(B) + P(A \cap B')$		
= 0.38 + 0.32 = 0.7		
(iii) Since A, C are independent, $P(A \cap C) = 0.5(0.46) = 0.23$		
Since B, C are independent, $P(B \cap C) = 0.5(0.38) = 0.19$		
Let $P(A \cap B \cap C) = y$		
$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$		



35.	Suggested Answers
(i)	
(ii)	$P(H) = \frac{80}{240} = \frac{1}{3}; P(C \cup H) = \frac{120}{240} = \frac{1}{2}$ $P(C Q H) = 1 P(C Q H) = 1 \frac{120}{240} = \frac{1}{2}$
	$P(C' \cap H') = 1 - P(C \cup H) = 1 - \frac{120}{240} = \frac{1}{2}$
(iii)	$P(C \cup H) = P(C) + P(H) - P(C \cap H)$ = P(C) + P(H) - P(C)P(H) since C and H are independent
	$\frac{1}{2} = P(C) + \frac{1}{3} - \frac{1}{3}P(C)$
	2 5 5
	$\frac{2}{3}P(C) = \frac{1}{6}$
	$P(C) = \frac{1}{4}$
	Alternative method:
	From (ii), $P(C' \cap H') = \frac{1}{2}$
	Since C and H are independent, C' and H' are also independent
	$P(C')P(H') = \frac{1}{2}$
	$P(C')\left(1 - \frac{80}{240}\right) = \frac{1}{2}$
	$P(C') = \frac{3}{4}$
	$P(C) = \frac{1}{4}$
(iv)	
	$P(C \cup H) = \frac{120}{240} \frac{24}{240} x - \frac{24}{240}$ $\frac{120}{240} - \left(x - \frac{24}{240}\right) = \frac{144}{240} - x$



36.	Suggested Answers
(i)	Let G_A and G_B represent the event that the ball drawn is green from Box A and Box
	B respectively.
	Let W_A and W_B represent the event that the ball drawn is white from Box A and Box
	B respectively.



37.	Suggested Answers
(a)(i)	$P(A \cap B)$
	= P(fall, rise, rise) + P(fall, fall, rise)
	$= (0.4 \times 0.15 \times 0.6) + (0.4 \times 0.85 \times 0.15)$
	= 0.087
(ii)	P(B)
	$= \mathbf{P}(A \cap B) + \mathbf{P}(A' \cap B)$
	= 0.087 + P(rise, rise, rise) + P(rise, fall, rise)
	$= 0.087 + (0.6 \times 0.6 \times 0.6) + (0.6 \times 0.4 \times 0.15)$
	= 0.339
(iii)	$P(B \mid A)$
	$=\frac{\mathrm{P}(B \cap A)}{\mathrm{P}(A)}$
	- P(A)
	$=\frac{0.087}{0.4}$
	= 0.2175
	Since $P(B A) = 0.2175 \neq 0.339 = P(B)$, A and B are not independent.
	Let W be the number of Tuesdays in which the unit price of X rises, out of 12 Tuesdays. W = P(12, 0, 6)
	$W \sim B(12, 0.6)$ P(W = 5) = 0.101(2 + 6)
	P(W = 5) = 0.101 (3 s.f.)
(b)	$P(A \cap B)$
	= P(fall, rise, rise) + P(fall, fall, rise)
	$= (0.4 \times 0.15 \times 0.6) + (0.4 \times 0.85 \times 0.15)$
	= 0.087
	$\frac{P(B)}{P(A - B) + P(A - B)}$
	$= P(A \cap B) + P(A' \cap B)$
	= 0.087 + P(rise, rise, rise) + P(rise, fall, rise)
	$= 0.087 + (0.6 \times 0.6 \times 0.6) + (0.6 \times 0.4 \times 0.15)$
(-)	= 0.339
(c)	$P(B \mid A)$
	$=\frac{P(B \cap A)}{P(A)}$
	P(A)
	$=\frac{0.087}{0.4}$
	= 0.2175
	-0.2175