

HCI H2 Math Prelim Paper 2 Solution

© <u></u> Hwa Chong Institution 2012

$$\frac{dA}{dh} = \frac{(h-8)(1352) - (1352h)(1)}{(h-8)^2} + 4$$

$$= \frac{-10816}{(h-8)^2} + 4$$
To minimise the paper used,
$$\frac{dA}{dh} = 0$$

$$\Rightarrow \frac{10816}{(h-8)^2} = 4$$

$$\Rightarrow (h-8)^2 = 2704$$

$$\Rightarrow h = \sqrt{2704} + 8 = 60$$
First derivative test:
$$\frac{h}{(h-8)^2} = \frac{(60)^2}{(h-8)^3} = \frac{60}{(h-8)^2}$$
OR
Second derivative test:
$$\frac{d^2A}{dh^2} = \frac{21632}{(h-8)^3} > 0$$
Hence at $h = 60$, the amount of paper used is minimised.
At $h = 60$,
$$\Rightarrow w = \frac{1352}{52} + 4$$

$$w = 30$$

Hence the dimension of the paper is 30 cm by 60 cm.

$$\begin{array}{c|c} 3\\ (i) \\ z^{n} + \frac{1}{z^{n}} = e^{in\theta} + \frac{1}{e^{in\theta}} = e^{in\theta} + e^{-in\theta} \\ = \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta \\ = 2\cos n\theta \quad (\text{shown}) \end{array}$$

(ii) By taking
$$n = 1$$
, $z + \frac{1}{z} = 2\cos\theta$
 $\Rightarrow \cos\theta = \frac{1}{2}\left(z + \frac{1}{z}\right)^3$
 $\cos^3\theta = \left[\frac{1}{2}\left(z + \frac{1}{z}\right)^3\right]^3$
 $= \frac{1}{8}\left(z^3 + 3z + \frac{3}{z} + \frac{1}{z^3}\right)$ (shown)
 $\cos^3\theta = \frac{1}{8}\left(z^3 + 3z + \frac{3}{z} + \frac{1}{z^3}\right)$
 $= \frac{1}{8}\left(z^3 + \frac{1}{z^3} + 3\left(z + \frac{1}{z}\right)\right)$
 $= \frac{1}{8}\left(2\cos 3\theta + 3(2\cos\theta)\right)$
 $= \frac{1}{4}\cos 3\theta + \frac{3}{4}\cos\theta$ (shown)
(iii) Method 1
 $\int \cos^3 3\theta \, d\theta = \int \frac{1}{4}\cos 9\theta + \frac{3}{4}\cos 3\theta \, d\theta$
 $= \frac{1}{36}\sin 9\theta + \frac{1}{4}\sin 3\theta + C$
Method 2
 $\int \cos^3 3\theta \, d\theta = \int \cos 3\theta \cos^2 3\theta \, d\theta$
 $= \int \cos 3\theta (1 - \sin^2 3\theta) \, d\theta$
 $= \int \cos 3\theta - \cos 3\theta \sin^2 3\theta \, d\theta$
 $= \frac{1}{3}\sin 3\theta - \frac{1}{9}\sin^3 3\theta + C$

4

$$\begin{array}{ll} 4 \\ (a) \\ \Rightarrow -4a\mathbf{\hat{b}} - |\mathbf{a}|^{2} + 5|\mathbf{b}|^{2} = 0 \\ \text{Since we have } |\mathbf{a}||\mathbf{b}|\cos 60^{\circ} = \mathbf{a}\cdot\mathbf{\hat{b}} \Rightarrow \mathbf{a}\cdot\mathbf{\hat{b}} = \frac{|\mathbf{a}|}{2} \\ \therefore -2|\mathbf{a}| - |\mathbf{a}|^{2} + 5|\mathbf{b}|^{2} = 0 \\ |\mathbf{a}|^{2} + 2|\mathbf{a}| - 5 = 0 \\ |\mathbf{a}| = \frac{-2 \pm \sqrt{24}}{2} = \sqrt{6} - 1 \text{ or } -\sqrt{6} - 1(\text{rej}) \\ \therefore |\mathbf{a}| = \sqrt{6} - 1 \\ \hline |\mathbf{a}| = \frac{-2 \pm \sqrt{24}}{2} = \sqrt{6} - 1 \text{ or } -\sqrt{6} - 1(\text{rej}) \\ \therefore |\mathbf{a}| = \sqrt{6} - 1 \\ \hline |\mathbf{b}| \quad \overline{OC} = \frac{\mathbf{a}}{2} \Rightarrow \overline{OE} = \frac{3\overline{OB} + 4\overline{OC}}{7} = \frac{3\mathbf{b} + 2\mathbf{a}}{7} \\ \text{Let } AD : AB = \lambda, \text{ then} \\ \overline{OD} = \lambda \overline{OB} + (1 - \lambda)\overline{OA} = \lambda \mathbf{b} + (1 - \lambda)\mathbf{a} \\ \text{Since } 0, E, D \text{ are collinear}, \\ \overline{OE} = k\overline{OD} \text{ for some constant } k \Rightarrow k \left[\frac{3\mathbf{b} + 2\mathbf{a}}{7} \right] = \lambda \mathbf{b} + (1 - \lambda)\mathbf{a} \\ \lambda = \frac{3}{5} \\ AD : AB = 3:5 \\ \hline \\ \begin{array}{c} 5 \\ \text{(i)} \\ \text{Since } a, b \text{ and } c \text{ are positive, for } x > 0, \\ \frac{c}{(x+1)^{2}} > 0 \text{ since } a \text{ or all } a + b > 0 \\ \therefore y = ax + b + \frac{c}{(x+1)^{2}} > 0 \text{ for } x > 0 \text{ (shown)} \\ \hline \\ \hline \\ \begin{array}{c} (ii) \\ \text{(ii) Given area of region } R = 42 \\ \int_{0}^{3} ax + b + \frac{c}{(x+1)^{2}} \text{ dx} = 422 \\ \left[\frac{1}{2} ax^{2} + bx - \frac{c}{(x+1)^{2}} \text{ dx} = 42 \\ \left[\frac{1}{2} ax^{2} + bx - \frac{c}{(x+1)^{2}} \text{ dx} = 42 \\ \left[\frac{9}{2} a + 3b - \frac{3}{4} c = 42 \text{ (shown)} - \cdots \text{ (1)} \\ \hline \\ \hline \\ \begin{array}{c} (iii) \\ \text{(iii)} \\ y = ax + b + \frac{c}{(x+1)^{2}} \end{array}$$

© <u></u> Hwa Chong Institution 2012

At (0, 5),
$$b + c = 5$$
 (2)

$$\frac{dy}{dx} = a - \frac{2c}{(x+1)^3}$$
At (0, 5), $\frac{dy}{dx} = 0$

$$a - 2c = 0$$
 (3)
From GC, $a = 8, b = 1, c = 4$

$$\therefore \text{ equation of } G \text{ is } y = 8x + 1 + \frac{4}{(x+1)^2}.$$
(iv)

$$y = 8x + 1 + \frac{4}{(x+1)^2}$$
(iv)

$$y = 8x + 1 + \frac{4}{(x+1)^2}$$
(iv)

$$y = 8x + 1 + \frac{4}{(x+1)^2}$$
(iv)

$$x = 3$$
(Note: x-intercept (-1.585171, 0)]
(v)
Required volume

$$= \int_{0}^{3} \pi \left[8x + 1 + \frac{4}{(x+1)^2} \right]^2 dx - \int_{0}^{3} \pi (8x + 1)^2 dx$$

$$= 163.2774895$$

$$= 163.2774895$$

$$= 163 \min(s^3)$$
(ii) Let X be the time spent by a customer at a supermarket.
If $X \sim N(35, 30^2), P(X < 0) = 0.122.$
(i.e. the probability that the time spent being less than zero is significantly big.
However, X is a non-negative quantity. Therefore a normal distribution will not provide an adequate model.
(ii) Let X be the time spent by a customer at a supermarket.
 $X \sim N(35, 10^2)$

$$\begin{aligned} x_1 + x_2 - 3X \sim N(-35, 1100) \\ \text{or} \\ 3X - X_1 + X_2 \sim N(35, 1100) \\ P(X_1 + X_2 - 3X) \\ = P(X_1 + X_2 - 3X > 0) \\ = 0.146 \\ \hline 7(i) No. of ways = 7315 \times 4! = 175560 \\ \text{or} \quad "P_4 = 175560 \text{ or} \quad "C_4 = 7315 \\ \text{Using GC or guess and check, } n = 22. \\ \hline Method 1: \\ \text{Consider the 4 scholarship} \\ \hline 7 \text{ways to slot the 4} \\ \text{scholarship recipients.} \\ \hline 10 \text{ ways to slot the 4} \\ \text{scholarship recipients as 1 unit.} \\ \hline Case 1: The 4 scholarship recipients as 1 unit. \\ \hline Case 2: The 4 scholarship recipients are in the row with 6 seats. \\ \hline Case 2: The 4 scholarship recipients are in the row with 7 seats. \\ \hline No. of ways = 7 \times 4! \times 9! \\ = (4! \times {}^{\circ}C_{\times} \times 3! \times 7!) \\ \hline 11 \text{ ways to arrange remaining applicants in row with 7 seats.} \\ \hline 0 \text{ scholarship recipients in row with 7 seats.} \\ \hline 13! ways to arrange 1 unit \\ \text{of scholarship recipients in row with 7 seats.} \\ = 60963840 \\ \hline 8(i) P(A \mid B) \\ = \frac{P(A \cap B)}{P(B)} \\ P(2Curry, 1Spicy, 1others) + P(3Curry, 1Spicy) \\ = \frac{P(2Curry, 1Spicy, 1others) + P(3Curry, 1Spicy)}{P(exactly 1 Spicy)} \\ \hline \end{array}$$

$$= \begin{cases} \frac{10}{80} \times \frac{9}{79} \times \frac{10}{78} \times \frac{60}{77} \times \frac{4!}{2!} + \left(\frac{10}{80} \times \frac{9}{79} \times \frac{8}{78} \times \frac{10}{77} \times \frac{4!}{3!}\right) \\ = \frac{10}{80} \times \frac{70}{79} \times \frac{69}{78} \times \frac{8}{77} \times 4 \\ 0.0515162587 = 0.0515 (3 \text{ s.f.}) \end{cases}$$
OR
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \\ = \frac{\frac{(^{10}C_2 \times ^{10}C_1 \times ^{60}C_1) + (^{10}C_1 \times ^{10}C_1)}{8C_4}}{\frac{8^{10}C_4}{2}} \\ = \frac{\frac{141}{2737} \text{ or } 0.0515162587 = 0.0515 (3 \text{ s.f.}) \end{cases}$$
(ii)
$$= \frac{P(A)}{1 - P(0)} = \frac{1 + P(1) - P(1) + (^{10}C_1 \times ^{10}C_1)}{80 \times 77} \\ = \frac{1 - P(0) + P(1) - P(1) + (^{10}C_1 \times ^{10}C_1)}{80 \times 77} \\ = \frac{1 - P(0) + P(1) \\ = 1 - \frac{70}{80} \times \frac{69}{79} \times \frac{78}{78} \times \frac{67}{77} \\ = 1 - \frac{70}{80} \times \frac{69}{79} \times \frac{78}{78} \times \frac{67}{77} \\ = 1 - \frac{70}{80} \times \frac{69}{79} \times \frac{78}{78} \times \frac{67}{77} \\ = 0.0741568558 = 0.0742 (3 \text{ s.f.}) \\ P(A) \\ = P(2 \text{ curry}) + P(3 \text{ curry}) + P(4 \text{ curry}) \\ = \left(\frac{10}{80} \times \frac{9}{79} \times \frac{70}{78} \times \frac{69}{77} \times \frac{41}{212!} + \left(\frac{10}{80} \times \frac{9}{79} \times \frac{8}{78} \times \frac{70}{77} \times \frac{41}{3!} \right) \\ + \left(\frac{10}{80} \times \frac{9}{79} \times \frac{78}{78} \times \frac{7}{77} \right) \\ \left[or \quad \frac{(10)}{2} \begin{pmatrix} 70 \\ 2 \\ (8) \end{pmatrix} + \frac{(10)}{80} \begin{pmatrix} 70 \\ 4 \\ (8) \end{pmatrix} + \frac{(10)}{80} \begin{pmatrix} 10 \\ 4 \\ (8) \end{pmatrix} \\ \\ = 0.0741568558 = 0.0742 (3 \text{ s.f.}) \\ \\ \frac{10}{80} \times \frac{9}{79} \times \frac{7}{78} \times \frac{7}{77} \right) \\ \left[or \quad \frac{(10)}{2} \begin{pmatrix} 70 \\ 2 \\ (8) \end{pmatrix} + \frac{(10)}{80} \begin{pmatrix} 70 \\ 4 \\ (8) \end{pmatrix} + \frac{(10)}{80} \begin{pmatrix} 10 \\ 4 \\ 4 \end{pmatrix} \\ \\ = 0.0741568558 = 0.0742 (3 \text{ s.f.}) \\ \\ \frac{10}{80} \times \frac{9}{79} \times \frac{7}{78} \times \frac{7}{77} \end{pmatrix}$$

© <u>ﷺ</u> Hwa Chong Institution 2012

9740/02/Prelim/12

are not independent. From (i), P(A | B) = 0.0515Since $0.0515 = P(A | B) \neq P(A) = 0.0742$, A and B are not independent. Hence A' and B' are not independent. Method 2: Show $P(A \cap B) \neq P(A) \cdot P(B)$. Hence A and B are not independent, and $\therefore A'$ and B' are not independent. From (i), $P(A \cap B)$ $= \left(\frac{10}{80} \times \frac{9}{79} \times \frac{10}{78} \times \frac{60}{77} \times \frac{4!}{2!}\right) + \left(\frac{10}{80} \times \frac{9}{79} \times \frac{8}{78} \times \frac{10}{77} \times \frac{4!}{3!}\right)$ or $\frac{({}^{10}C_2 \times {}^{10}C_1 \times {}^{60}C_1) + ({}^{10}C_3 \times {}^{10}C_1)}{{}^{80}C_4}$ = 0.017830271 = 0.0178 (3 s.f.) $P(B) = \frac{10}{80} \times \frac{70}{79} \times \frac{69}{78} \times \frac{68}{77} \times 4$ or $\frac{{}^{10}C_1 \times {}^{70}C_3}{{}^{80}C_4}$ = 0.3461095866 = 0.346 (3 s.f.) $P(A) \cdot P(B) = 0.0742 \times 0.346 = 0.0256663987 = 0.0257$ Since $0.0178 = P(A \cap B) \neq P(A) \cdot P(B) = 0.0257$, A and B are not independent. Hence A' and B' are not independent. Note: Students can choose to show $P(A' \cap B') \neq P(A') \cdot P(B')$ or $P(A'|B') \neq P(A')$ or $P(B'|A') \neq P(B')$ Let *X* be the number of defective SIM cards, out of 10. 9(i) $X \sim B(10, 0.15)$ We assume that the probability of a SIM card being defective remains constant at 0.15. OR We assume that the defective SIM cards produced are independent of one another.

$P(X < 2) = P(X \le 1) = 0.5442998$
Let Y be number of 'good' batches, out of 33.
$Y \sim B(33, 0.5442998)$
Since $n = 33$ is large, $np = 17.962 > 5$,
n(1-p) = 15.038 > 5,
$Y \sim N(17.962, 8.18524)$ approx
$P(Y > 33 \times 0.8) = P(Y > 26.4)$
$= P(Y \ge 27) \xrightarrow{cc} P(Y > 26.5) = 0.00142$
The customers are ordered as they queue up at the payment counter.
$\frac{120}{-4}$
30
The first customer is chosen from the 1 st four customers using simple random
sampling.
Every 4 th customer is chosen thereafter.
No. As we cannot gather the profile of the customers and break down into strata
proportional to that of the 120 customers as the survey is done before the
customers leave.
Let X be the waiting time. Since $n = 100$ is large by CLT
Since $n = 100$ is large, by CL1,
$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{100}\right)$ approximately.
$P\left(7.5 < \overline{X} < 10\right) = 0.95$
and $P(\overline{X} > 10) = \frac{2}{3} P(\overline{X} < 7.5)$
$x + \frac{2x}{3} = 0.05$ $x = 0.03$

$$P(\overline{X} < 7.5) = 0.03 \implies P\left(Z < \frac{7.5 - \mu}{10}\right) = 0.03$$

$$P(\overline{X} < 10) = 0.98 \implies P\left(Z < \frac{10 - \mu}{10}\right) = 0.98$$

$$\frac{7.5 - \mu}{10} = -1.8808$$

$$\frac{\sigma}{10}$$

$$10(7.5 - \mu) = -1.8808\sigma$$

$$10\mu - 1.8808\sigma = 75 - --(1)$$

$$\frac{10 - \mu}{\sigma} = 2.0537$$

$$10(10 - \mu) = 2.0537\sigma$$

$$1$$

(iii)	For w and $\ln E$, $r = -0.9785715974 = -0.979$
	For w and $\frac{1}{E}$, $r = 0.9902693221 = 0.990$
	Since $ r $ for w and $\frac{1}{E}$ is closer to 1, the formula $\frac{1}{E} = e + fw$ is a better model.
(iv)	The least squares regression line of $\frac{1}{E}$ on w is appropriate since w is the
	independent variable.
	Using GC, the equation of the least squares regression line of $\frac{1}{E}$ on w is
	$\frac{1}{E} = 0.000029587529w + 0.0044040033$
	When $E = 0.13 \text{ kg} = 130 \text{g}$, we have
	$\frac{1}{130} = 0.000029587529w + 0.0044040033$
	$\therefore w = 111.1381891 = 111.14 \text{ ml}$
13 (i)	Let A be no. of accidents along NS line per week.
	$A \square \operatorname{Po}\left(\frac{m}{4}\right)$
	$P(A \ge 1) = 1 - P(A = 0) = 1 - e^{-\frac{m}{4}} = 0.25$
	$e^{-\frac{m}{4}} = 0.75$
	$\Rightarrow m = -4\ln\frac{3}{4}$ or $4\ln\frac{4}{3}$
(ii)	$A \square \operatorname{Po}\left(4\ln\frac{4}{3}\right)$
	$\mathbf{P}(A=2) p (1-p) * 2$
	=0.0621p(1-p)
(iii)	Let <i>B</i> be no. of accidents along EW line per week.
	$B \square \operatorname{Po}\left(\frac{1}{2}\right)$
	$A + B \square Po(0.5 + 0.28768)$
	$\mathbf{P}(B=0 \mid A+B=3)$

	$\mathbf{P}(B=0)\mathbf{P}(A=3)$
	= $P(A+B=3)$
	= 0.0487
(iv)	Let <i>C</i> be the number of accidents along the EW line per month.
	$C \square \operatorname{Po}(2)$
	$1 - P(C \le 4) = 1 - 0.94735 = 0.052653$
	P(more than 52 months with at most 4 railway accidents) = P(less than 8 months with more than 4 railway accidents)
	Let X be no. of months, out of 60, with more than 4 accidents.
	$X \sim B(60, 0.052653)$
	Since $n = 60$ is large and $p = 0.052653$ is small such that $np = 3.1592 < 5$.
	$X \sim \text{Po}(3.1592)$ approx
	$P(X < 8) = P(X \le 7) = 0.984$
	Note:
	If we use P(more than 52 months with at most 4 railway accidents), than
	$X \sim B(60, 0.94735)$ and since p is large, Poisson approximation will fail.