

NANYANG JUNIOR COLLEGE JC2 PRELIMINARY EXAMINATION SOLUTIONS

1

Higher 2

MATHEMATICS

Paper 2

9740/02

17th September 2014

3 Hours

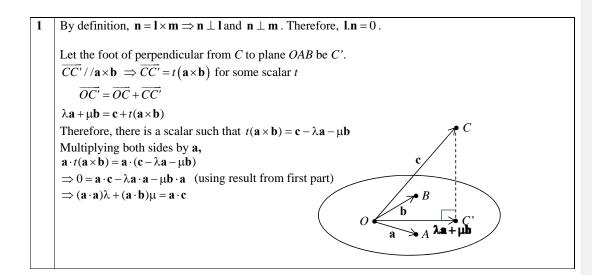
Additional Materials:	Cover Sheet
	Answer Paper
	List of Formulae (MF15)

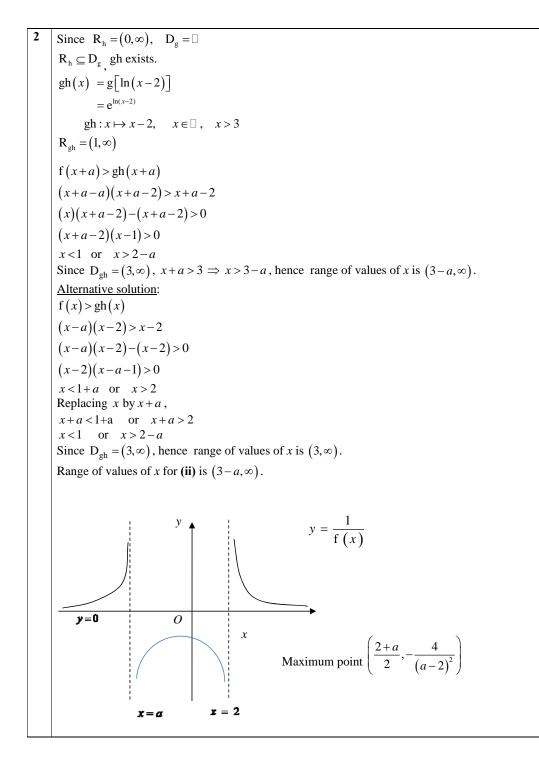
READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.


You are expected to use a graphic calculator.


Unsupported answers from a graphic calculator are allowed unless a question specifically states otherwise. Where unsupported answers from a graphic calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands. You are reminded of the need for clear presentation in your answers.

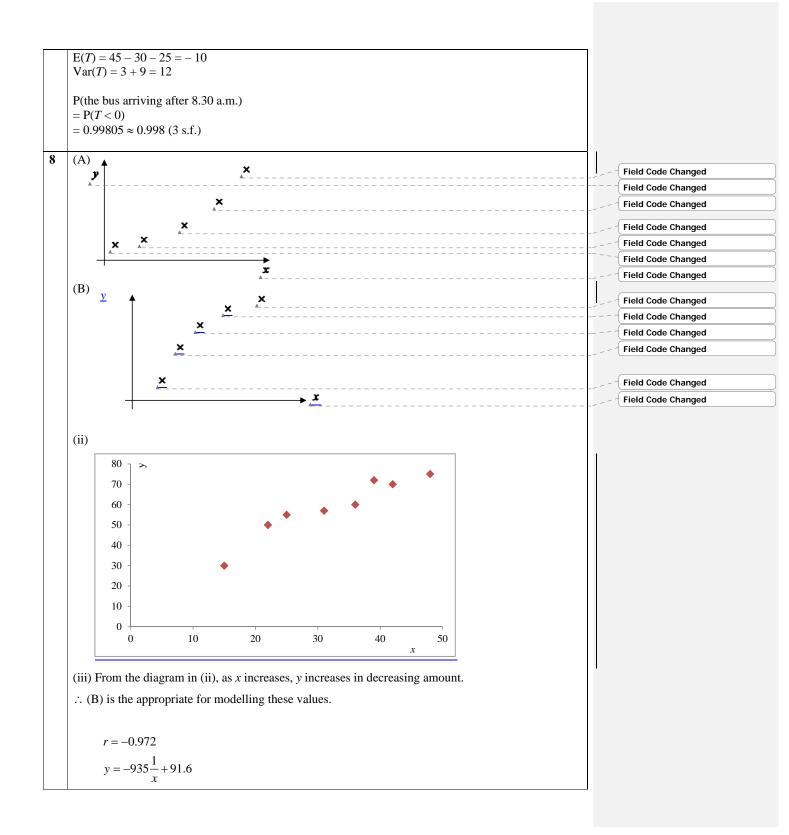
At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

NYJC 2014 Preliminary Examination

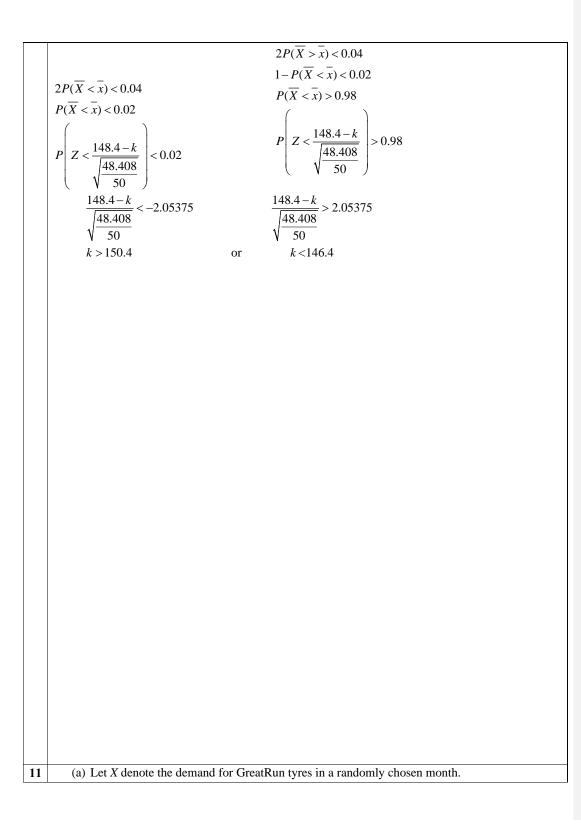
9740/02

$$\begin{array}{l} \mathbf{3} \qquad \qquad y = \frac{\ln \sqrt{1+x}}{1+x} \\ \qquad y = \frac{1}{2} \frac{\ln(1+x)}{1+x} \\ \qquad 2(1+x) y = \ln(1+x) \\ \qquad 2(1+x) \frac{d^2y}{dx} + 2y = \frac{1}{1+x} \\ \qquad 2(1+x) \frac{d^2y}{dx^2} + 4 \frac{dy}{dx} = \frac{-1}{(1+x)^2} \\ \qquad 2(1+x) \frac{d^3y}{dx^3} + 6 \frac{d^2y}{dx^2} = \frac{2}{(1+x)^3} \\ (i) \text{ When } x = 0, \ y = 0, \ \frac{dy}{dx} = \frac{1}{2}, \ \frac{d^2y}{dx^2} = -\frac{3}{2}, \ \frac{d^3y}{dx^3} = \frac{11}{2} \\ \qquad \frac{\ln \sqrt{1+x}}{1+x} = 0 + x \left(\frac{1}{2}\right) + \frac{x^2}{2} \left(-\frac{3}{2}\right) + \frac{x^3}{6} \left(\frac{11}{2}\right) + \dots \\ \qquad = \frac{1}{2}x - \frac{3x^2}{4} + \frac{11x^3}{12} + \dots \\ (ii) \qquad \frac{\ln \sqrt{1+x}}{1+x} = \frac{1}{2} [\ln(1+x)](1+x)^{-1} \\ \qquad = \frac{1}{2} [x - \frac{x^2}{2} + \frac{x^3}{3} + \dots](1-x+x^2-x^3+\dots) \\ \qquad = \frac{1}{2} [x - x^2 + x^3 - \frac{x^2}{2} + \frac{x^3}{2} + \frac{x^3}{3} + \dots] \\ \qquad = \frac{1}{2}x - \frac{3x^2}{4} + \frac{11x^3}{12} + \dots \\ (iii) \qquad \int_{0}^{\frac{1}{4}x} y \ dx = \int_{0}^{\frac{1}{4}x} \left(\frac{1}{2}x - \frac{3x^2}{4} + \frac{11x^3}{12} + \dots\right) dx \\ \qquad = 0.120 \\ \end{array}$$
Approximation is not good as $x = \frac{\pi}{4}$ is not close to 0.
(iv) $y = \frac{1}{2}x$

(a)(i) The first three triangular numbers are 1, 3, 6. 4 (ii) $t_{r+1} - t_r = r + 1 P \stackrel{n-1}{a} (t_{r+1} - t_r) = \stackrel{n-1}{a} (r+1)$ P $t_2 - t_1$ $+ t_3 - t_2 = \stackrel{n-1}{a} (r+1)$ $+ t_n - t_{n-1}$ P $t_n - t_1 = \stackrel{n-1}{a} (r+1)$ $P t_n = 1 + 2 + 3 + \ldots + n = \frac{1}{2}n(n+1)$ (iii) Sum of the first N triangular numbers $= \overset{N}{a}_{n=1}^{n} t_{n} = \frac{1}{2} \overset{N}{a}_{n=1}^{n} \overset{Q}{\notin} (n+1) \overset{Q}{=} \frac{1}{2} \overset{Q}{a}_{n=1}^{n} n^{2} + \overset{N}{a}_{n=1}^{n} \overset{Q}{\stackrel{T}{=}}$ $= \frac{1}{2} \frac{\acute{e}N}{\acute{e}6} (N+1)(2N+1) + \frac{N}{2}(N+1) \overset{\vee}{\mu}$ $=\frac{N}{6}(N+1)(N+2)$ (i) $a_n > 2014 \implies 3^n + n - 1 > 2014$. п $3^n + n - 1$ 734 6 7 2193 8 6568


> By GC, least n = 7. So the population of the bacteria first exceeds 2014 thousands 7 days after the start of the experiment.

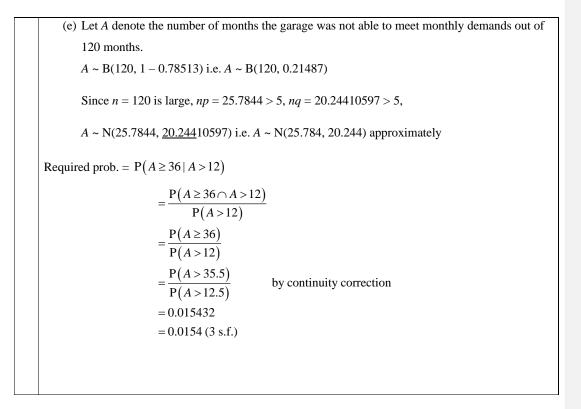
(ii) Rate of growth of H2 Bacteria 2 days after the start of the experiment =


$$\frac{\mathrm{d}a_n}{\mathrm{d}n}\Big|_{n=2} = \left(3^n \ln 3 + 1\right)\Big|_{n=2} = 9\ln 3 + 1 \text{ thousands/day.}$$

or by GC, $\frac{\mathrm{d}a_n}{\mathrm{d}n}\Big|_{n=2} \approx 10.9 \text{ thousands/day.}$

Let b_n denote the number of H3 Bacteria (in thousands) exactly *n* days after the start of the experiment. Then $\{b_n\}$ is an arithmetic sequence with first term 900 and common difference 800. Therefore $b_n = 900 + (n-1)(800) = 800n + 100$. We want least *n* such that $a_n - b_n > 0 \Rightarrow 3^n + n - 1 - (800n + 100) > 0 \Rightarrow 3^n - 799n - 101 > 0$.

n $3^n - 799n - 101$ 7 -3507 8 68 9 12391 By GC, the population of H2 Bacteria will exceed that of H3 Bacteria by the 8 th day. 5 Numbered all 880 students names from 1 to 880.	
8 68 9 12391 By GC, the population of H2 Bacteria will exceed that of H3 Bacteria by the 8 th day. 5 Numbered all 880 students names from 1 to 880.	
8 68 9 12391 By GC, the population of H2 Bacteria will exceed that of H3 Bacteria by the 8 th day. 5 Numbered all 880 students names from 1 to 880.	
9 12391 By GC, the population of H2 Bacteria will exceed that of H3 Bacteria by the 8 th day. 5 Numbered all 880 students names from 1 to 880.	
5 Numbered all 880 students names from 1 to 880.	
5 Numbered all 880 students names from 1 to 880.	
	d
Chose a random starting number from 1 to 11^{th} (as $880/80 = 11$). Subsequently take even	ry 11 th name
after the starting name. The process continues until 80 students have been chosen. The 80 students chosen may not have the correction proportion of male and female stu	idents as the
list of students may not have an even spread of male and female students in the list.	dents as the
Stratified Sampling	
6 probability that A wins the match = $0.6p + 0.6(1-p)(0.3) + 0.4(0.3)p$	
= 0.18 + 0.54p	
P(B won the first set Player B loses the match) = $\frac{0.4(0.3)p}{0.18+0.54p}$	
$\frac{0.4(0.3)p}{0.18+0.54p} = 0.15$	
$0.18 + 0.54 p^{-0.13}$	
9	
Solving, $p = 0.692$ or $\frac{9}{13}$	
When $p = 0.65$, P(A wins) = 0.531	
P(3 rd win in <i>n</i> th match) = ${}^{n-1}C_2(0.531)^2(1-0.531)^{n-3} \times (0.531) = 0.10866$	
$(n-1)(n-2)$ (2, $(n-1)^3$ (2, $(n-2)^{n-3}$) (2, $(n-2)^{n-3}$)	
$\frac{(n-1)(n-2)}{2}(0.531)^3(0.469)^{n-3} = 0.10866$	
From GC, <i>n</i> = 7	
The set of	
7 P(Wise misses the bus) = $P(X - Y < 0)$	
$X - Y \sim N(25 - 15, 9 + 4)$	
i.e. $X - Y \sim N(10, 13)$	
Thus, probability required = $0.0027728 \approx 0.00277$ (3 s.f.)	
T = 45 - (W + X)	
$ I - \tau J - \langle W + A \rangle $	



when $y = 64 \implies x = 33.8$ (iv) As y = 64 falls within the given data range, the estimated value is valid. Neither regression line is suitable to estimate x since x is the independent variable which can be controlled. Number of ways = 7! + 7! - 6! = 93609 Number of ways = $(11-1)! \times 2/4! \times 12 = 3628800$ Number of ways = $(10-1)!/4! \times 10 \times 12 = 1814400$ 10 (a)(i) $H_0: \mu = 40$ $H_1: \mu > 40$ at 5% level of significance necessary assumption: the length of steel pins follows a normal distribution Apply t-test reject H_0 if p-value < 0.05 $\overline{x} = 40 + \frac{3.7}{8} = 40.4625$ $s^2 = \frac{1}{7} [7.27 - \frac{(3.7)^2}{8}] = 0.794107$ p - value = 0.09278Since p - value > 0.05, we do not reject H_0 . There is insufficient evidence at 5% level of significance to conclude that mean length of steel pins is more than 40 mm. (ii) For a two-tail test, p - value = 2(0.09278) > 0.05. The conclusion is the same as (i) (b) $H_0: \mu = k$ $H_1: \mu \neq k$ at 4% level of significance Given $\overline{x} = 148.4$ $s^2 = \frac{1}{49}(2372) = 48.40816$ For H_0 to be rejected, p-value < 0.04 or if $\overline{x} > k$ if $\overline{x} < k$

$X \sim \text{Po}(4)$			
Required pro	b. = $P(X \le 5) = 0.7851303$	874 = 0.785 (3 s.f.)	
(b) Using GC,			
(-)8,	No. of terms and d	Durl	
	No. of tyres sold, x 0 P	Prob. P(X = 0) = 0.01832	
		P(X=0) = 0.01032 P(X=1) = 0.07326	
		P(X=2) = 0.14653	
		P(X=3) = 0.19537	
		P(X = 4) = 0.19537	
	- 1	$P(X \ge 5) = 0.37116$	
Hence, the n	nost probable number of tyre	es sold is 5.	
(c) Let the number	per of tyres the garage shoul	d keep in stock be N.	M1: Forming
P(X > N) <	0.001		the inequality
$1 - P(X \le N) < 0.001$		& use GC	
X	,		
Using GC,			
	Ν	P(X > N)	A1
	10	0.00284 > 0.001	
	11	0.000915 < 0.001	
Hence the le	ast number of tyres the gara	ge should keep in stock at t	he beginning of the month
	ist number of types the gara	ge should keep in stock at t	the beginning of the month
is 11.			
(d) Let Y denote	the demand for GreatRun ty	vres in a randomly chosen	week. M1: Calculate
$Y \sim Po(1)$			the probability
1~10(1)			of selling more than 1 tyre
P(Y > 1) = 1	$-P(Y \le 1) = \underline{0.26424}11176$		than i tyre
- () -	- () <u></u>		
Let W denote	e the number of weeks wher	e more than 1 GreatRun ty	B1: Define & re is sold out of the weeks.
			distribution
$W \sim B(4, 0.2)$	6424)		A1
	$bb. = P(W > 2) = 1 - P(W \le 1)$	2) = 0.059174 = 0.0592 (3)	s.f.) B1: Define &
Required pro	. , 、		identify the
Required pro			distribution
Required pro			M1: Checking
Required pro			
Required pro			conditions M1: Approximated
Required pro			conditions M1: Approximated distribution
Required pro			M1: Approximated
Required pro			M1: Approximated distribution

M1: Apply

----- END OF PAPER -----