(Pure Mathematics) Chapter 1: Equations

Objectives

At the end of the chapter, you should be able to:

- (a) solve quadratic equations using factorisation, completing the square, formula, sketching of graph and a GC;
- (b) understand and use the conditions for a quadratic equation to have (i) two real and distinct roots, (ii) two real and equal roots, (iii) no real roots;
- (c) understand and use the conditions for a quadratic equation to be always positive (or always negative);
- (d) formulate a quadratic equation from a problem situation and interpret the solution in the context of the problem;
- (e) solve a pair of simultaneous equations, one linear and one quadratic, by substitution;
- (f) formulate a system of linear equations from a problem situation;
- (g) find the solution of a system of linear equations using a Graphing Calculator.

Content

- 1.1 Quadratic Functions
 - 1.1.1 Solving Quadratic Equations
 - 1.1.2 Nature of Roots of a Quadratic Equation
 - 1.1.3 Conditions for Quadratic Expression to be always positive (or always negative)
 - 1.1.4 Intersection Problems Leading to Quadratic Equations
- 1.2 Simultaneous Linear and Quadratic Equations in Two Unknowns
 - 1.2.1 Solving Simultaneous Linear and Quadratic Equations in Two Unknowns
 - 1.2.2 Application questions
- 1.3 Systems of linear equation (SOLE)
 - 1.3.1 Using Graphing Calculator to solve SOLE
 - 1.3.2 Modelling a System of Linear Equations to Solve Practical Problems

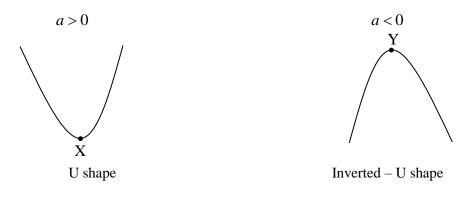
References

- 1. New Additional Mathematics, Ho Soo Thong (Msc, Dip Ed), Khor Nyak Hiong (Bsc, Dip Ed)
- 2. New Syllabus Additional Mathematics (7th Edition), Shinglee Publishers Ptd Ltd

<u>1.1 Quadratic Functions</u>

The expression $f(x) = ax^2 + bx + c$, where $a \neq 0$, is called a quadratic function.

When the graph of the function $y = ax^2 + bx + c$ is drawn, two types of graphs are obtained, depending on the value of *a*.



Note:

- 1. *a* is the coefficient of x^2 *b* is the coefficient of *x c* is the coefficient of x^0 (also known as the constant term or the term independent of *x*)
- 2. If a > 0, the curve has a minimum point at X. For example, in $y = 2x^2 - 7x + 4$, a = 2, b = -7, c = 4. Since a = 2 > 0, the curve is U shape and has a minimum point.

If a < 0, the curve has a maximum point at Y. For example, in $y = -x^2 - 6x + 9$, a = -1, b = -6, c = 9. Since a = -1 < 0, the curve is Inverted – U shape and has a maximum point.

- 3. The shape of a quadratic function is <u>symmetrical</u> about its minimum or maximum point.
- 4. f(x) is a function in terms of x. f is the name of the function. Go to the following link to know more about function: https://www.mathsisfun.com/sets/function.html. (read up to the section "Relating")

<u>1.1.1</u> Solving Quadratic Equations

The general form of a quadratic equation is $ax^2 + bx + c = 0$, $a \neq 0$.

There are five methods of solving a quadratic equation, namely:

- (a) Factorisation
- (b) Completing the Square
- (c) Formula
- (d) Graphical Method
- (e) GC

(a) Factorisation

Method

- 1. Bring all the terms to one side of the equation such that the other side is 0.
- 2. Use Cross Factorisation Method to factorize the equation.

Example 1

Solve the quadratic equation $3x^2 + x - 2 = 0$ using factorization.

Solution:

$$3x^{2} + x - 2 = 0$$

(3x - 2)(x + 1) = 0
3x - 2 = 0 or x + 1 = 0
$$x = \frac{2}{3} \text{ or } x = -1$$

True or False? (3x-2)(x+1) = 2 $\Rightarrow 3x-2=2$ or x+1=2Ans: False (the result is only true when the right hand side is 0)

Note:

1. The solution of the quadratic equation, i.e. $x = \frac{2}{3}$ or x = -1 are also called the **roots** of the quadratic equation.

2. (3x-2) and (x+1) are called **factors** of the quadratic expression $3x^2 + x - 2$.

(b) Completing the Square

A quadratic equation of the form $ax^2 + bx + c = 0$, $a \ne 0$ can be expressed to the form $a(x-p)^2 + q = 0$ by completing the square.

Note:

The coefficient of x^2 must be 1 before completing the square method can be carried out.

Example 2

Solve the quadratic equation $2x^2 + 8x + 1 = 0$ by completing the square.

Soluti	ion:
~ ~ ~ ~ ~	

Solution	Solution.		
$2x^2 + 8x + 1 = 0$	Alternative Method:		
$2(x^2+4x)+1=0$	$2x^2 + 8x + 1 = 0$		
$2[x^2 + 4x + 2^2 - 2^2] + 1 = 0$	$x^{2} + 4x + \frac{1}{2} = 0 \Longrightarrow x^{2} + 4x + 2^{2} - 2^{2} + \frac{1}{2} = 0$		
$2[(x+2)^2 - 2^2] + 1 = 0$	$(x+2)^2 - 2^2 + 0.5 = 0 \Longrightarrow (x+2)^2 = 3.5$		
$2(x+2)^2 = 7$			
$x+2=\pm\sqrt{\frac{7}{2}} \Rightarrow x=-2\pm\sqrt{\frac{7}{2}}$	$x + 2 = \pm \sqrt{\frac{7}{2}} \Longrightarrow x = -2 \pm \sqrt{\frac{7}{2}}$		
$\sqrt{2}$			

(c) Formula

The general formula of solving a quadratic equation of the form $ax^2 + bx + c = 0$, $a \neq 0$ is

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example 3

Solve the quadratic equation $x^2 + 7x - 3 = 0$ using formula.

Solution:

$x = \frac{-7 \pm \sqrt{7^2 - 4(1)(-3)}}{\sqrt{7^2 - 4(1)(-3)}}$
2 $-7\pm\sqrt{61}$
$=\frac{1}{2}$
$=\frac{-7+\sqrt{61}}{2}$ or $\frac{-7-\sqrt{61}}{2}$

Note:

The expression $b^2 - 4ac$ in the general formula is known as the **discriminant** of the quadratic equation as it determines the nature (type) of roots that a quadratic equation has.

(d) Graphical Method

Example 4

Solve the quadratic equation $x^2 - 5x + 6 = 0$ using graphical method.

Solution:

From the graph, x = 2 or x = 3. $y = x^{2} - 5x + 6$ Why are the *x*-intercepts the solution for $x^{2} - 5x + 6 = 0$? Ans: The *x*-intercepts are the points of intersection between the line y = 0 and the curve $y = x^{2} - 5x + 6$.

Note:

The x – intercepts of the curve $y = x^2 - 5x + 6$ are the solutions of the quadratic equation $x^2 - 5x + 6 = 0$.

<u>(e) GC</u>

Example 5

Solve the quadratic equation $7x^2 + 6x - 5 = 0$ using a calculator.

Solution:

Steps	Screenshot	Remarks
Press Select PlySmlt2	NORMAL FLOAT AUTO REAL RADIAN MP	
Press 1 to select POLYNOMIAL ROOT FINDER	NORMAL FLOOT AUTO REAL RADIAN MO PLYSHITZ APP POLYNOMIAL ROOT FINDER 2:SIMULTANEOUS EQN SOLVER 3:ABOUT 4:POLY ROOT FINDER HELP 5:SIMULT EQN SOLVER HELP 6:QUIT APP	
Select 2 in the ORDER option Press <u>GRAPH</u> (NEXT) to go to the next screen	NORMAL FLOAT AUTO REAL RADIAN 199 POLY ROOT FINDER MODE ORDER 1 2 3 4 5 6 7 8 9 10 REAL a+bi re^(0i) AUTO DEC NORMAL SCI ENG FLOAT 0 1 2 3 4 5 6 7 8 9 RADIAN DEGREE	ORDER prefers to the order of the polynomial that you are solving. (i.e. highest degree of the polynomial)
Enter the coefficients of the quadratic equation (i.e. a, b and c) and select "+ " or "- " according to the equation that you are solving.	NORMAL FLOAT AUTO REAL RADIAN MP	
Press GRAPH (SOLVE) to solve the equation Note: Press F∢►D will sometimes convert decimal to fraction	NORMAL FLOAT AUTO REAL RADIAN MP 7x2+ 6x- 5=0 x100.5190356544 x2=-1.376178512	The solutions are given by x_1 and x_2 .

From GC, x = 0.519 or x = -1.38

Note:

GC may not give exact values. If the question requires exact answer, do not use GC but you can always use GC to check your answer.

Exercise 1

1. Solve the following equations using the stated method in the bracket.

- (a) $2x^2 11x = -12$ (factorisation)
- (b) $3x^2 8x + 1 = 0$ (completing the square)
- (c) $-x^2 6x + 1 = 0$ (formula)
- (d) $2x^2 13x + 14 = 0$ (GC)

Solution:

(a) $2x^2 - 11x = -12$	(b) $3x^2 - 8x + 1 = 0$
$2x^2 - 11x + 12 = 0$	$3\left[x^2 - \frac{8}{3}x\right] + 1 = 0$
(2x-3)(x-4) = 0	
2x - 3 = 0 or $x - 4 = 0$	$3 \left x^{2} - \frac{8}{3}x + \left(-\frac{4}{3}\right)^{2} - \left(-\frac{4}{3}\right)^{2} \right + 1 = 0$
$x = \frac{3}{2}$ or $x = 4$	
$x = \frac{1}{2}$ or $x = 1$	$3\left(x-\frac{4}{3}\right)^2-\frac{16}{3}+1=0$
(c) $-x^2 - 6x + 1 = 0$	
	$\left(x-\frac{4}{3}\right)^2 = \frac{13}{9}$
$x = \frac{6 \pm \sqrt{(-6)^2 - 4(-1)(1)}}{2(-1)}$	
$6\pm\sqrt{40}$	$x - \frac{4}{3} = \pm \sqrt{\frac{13}{9}}$
$x = \frac{6 \pm \sqrt{40}}{-2}$	$4 - \sqrt{13}$ $4 + \sqrt{13}$
$x = \frac{6 \pm 2\sqrt{10}}{2}$	$x = \frac{4 - \sqrt{13}}{3}$ or $x = \frac{4 + \sqrt{13}}{3}$
-2	Alternative Method
$x = -3 - \sqrt{10}$ or $x = -3 + \sqrt{10}$	(b) $3x^2 - 8x + 1 = 0$
(d) Using GC, $x = 5.14$ or $x = 1.36$	$- x^2 - \frac{8}{3}x + \frac{1}{3} = 0$
	$x^{2} - \frac{8}{3}x + \left(-\frac{4}{3}\right)^{2} - \left(-\frac{4}{3}\right)^{2} + \frac{1}{3} = 0$
	$\left(x - \frac{4}{3}\right)^2 - \left(-\frac{4}{3}\right)^2 + \frac{1}{3} = 0$
	$\left(x-\frac{4}{3}\right)^2 = \frac{13}{9}$
	$x - \frac{4}{3} = \pm \frac{\sqrt{13}}{3} \Longrightarrow x = \frac{4}{3} \pm \frac{\sqrt{13}}{3}$
Answer	