2021 KSS AM Prelim P1 (Solutions)

1
$$x^{3} + 2x)x^{4} + 1$$

$$-(x^{4} + 2x^{2})$$

$$-2x^{2} + 1$$

$$\frac{x^{4} + 1}{x^{3} + 2x} = x + \frac{1 - 2x^{2}}{x(x^{2} + 2)}$$

$$Let \frac{1 - 2x^{2}}{x(x^{2} + 2)} = \frac{A}{x} + \frac{Bx + C}{x^{2} + 2}$$

$$when x = 0$$

$$A = \frac{1}{2}$$

$$By comparing,$$

$$\frac{1}{2}(x^{2} + 2) + x(Bx + C) = 1 - 2x^{2}$$

$$B = -\frac{5}{2}$$

$$C = 0$$

$$\therefore \frac{x^{4} + 1}{x^{3} + 2x} = x + \frac{1}{2x} - \frac{5x}{2(x^{2} + 2)}$$

$$\frac{1}{2}(x^{2} + 2) + x(Bx + C) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

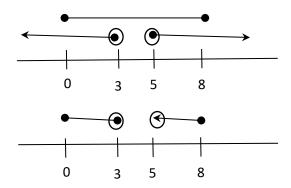
$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} + 2) = 1 - 2x^{2}$$

$$x + \frac{1}{2}(x^{2} + 2) + \frac{1}{2}(x^{2} +$$

2 $-15 < x^2 - 8x$ and $x^2 - 8x \le 0 < x^2 - 8x + 15$ 0 < (x - 5)(x - 3) $x(x - 8) \le 0$ (sketch) $\therefore x < 3 \text{ or } x > 5$ $\therefore 0 \le x \le 8$



The solution set is $0 \le x < 3$ and $5 < x \le 8$, hence x = 5 does not satisfy the inequality.

3i	$f(x) = 2(x+1)(x^2 - 2x + 3) = 2x^3 - 2x^2 + 2x + 6$	
3ii	f(x) = 0	
	$x^2 - 2x + 3 = 0$	
	$b^2 - 4ac = (-2)^2 - 4(1)(3) = -8 < 0$	
	Since there are no real roots for the quadratic factor, $f(x)$ has only 1 real root, $x = -1$.	
3iii	$f\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^3 - 2\left(\frac{3}{2}\right)^2 + 2\left(\frac{3}{2}\right) + 6 = \frac{45}{4}$ or 11.25	
4ai	center = (-2,3)	
	radius = $\sqrt{2^2 + 3^2 + 131} = 12$ units	
4aii	Distance of A to center = $\sqrt{(10 - (-2))^2 + (7 - 3)^2} = \sqrt{60} = 12.64 units$ [M1]	
	Since distance of A to center = 12.6 units $(3s.f.) > 12$ = radius,	
	The person will not be able to make use of free WiFi.	
	$sub \ x = 1-, \ y = 7$	
	$LHS = 10^2 + 7 + 4(10) - 6(7) = 147 \neq 131 = RHS$	
	Since 147>131, i.e. standing outside the circumference of the coverage, hence the person will not be able to make use of free WiFi.	
41.		
4bi	$Midpo int_{AC} = \left(\frac{1-6}{2}, \frac{5+2}{2}\right) = \left(\frac{-5}{2}, \frac{7}{2}\right)$	
	$m_{\scriptscriptstyle AC} = rac{3}{7}$	
	$m_{BD} = -\frac{7}{3}$	
	$l_{BD}: y - \frac{7}{2} = -\frac{7}{3}(x + \frac{5}{2})$	
	$y = -\frac{7}{3}x - \frac{7}{3}$	
4bii	B(-1,0)	
	Let D be (x, y)	
	$\left(\frac{x-1}{2}, \frac{y+0}{2}\right) = \left(\frac{-5}{2}, \frac{7}{2}\right)$	
	x = -4 ; $y = 7$	
	∴ D(-4,7)	

4biii	$m_{AB} = \frac{5}{2}$ and $m_{AD} = -\frac{2}{5}$	
	2 3	
	Since $m_{AB} \times m_{AD} = \frac{5}{2} \times \left(-\frac{2}{5}\right) = -1$	
	and $ABCD$ is given as a rhombus, i.e. $AB = AD \cdot ABCD$ is a square.	
5i	$y = \ln(8+3x) - \ln(3x-4)$	
	$\frac{dy}{dx} = \frac{3}{8+3x} - \frac{3}{3x-4} = -\frac{36}{(8+3x)(3x-4)} \neq 0$	
	Since $\frac{dy}{dx} \neq 0$, there is no turning point for all values of x. (shown)	
5ii	,	
511	$-\frac{36}{(8+3x)(3x-4)} < 0$	
	(8+3x)(3x-4) > 0	
	$x < -\frac{8}{3}$ or $x > \frac{4}{3}$	
	3 3	
6	$\frac{dy}{dx} = \cos x + \sqrt{3} \sin x$	
	$\frac{dy}{dx} = 0$	
	dx	
	$\tan x = -\frac{1}{\sqrt{3}}$	
	$basic \angle = \frac{\pi}{6}$ $x = \frac{5\pi}{6} , \frac{11\pi}{6}$	
	$x = \frac{5\pi}{6}$, $\frac{11\pi}{6}$	
	y=2 , -2	
	$\therefore \left(\frac{5\pi}{6}, 2\right), \left(\frac{11\pi}{6}, -2\right)$	
	$\frac{d^2y}{dx^2} = -\sin x + \sqrt{3}\cos x$	
	At $\left(\frac{5\pi}{6}, 2\right)$, $\frac{d^2y}{dx^2} = -2 < 0$: maximum point	
	At $\left(\frac{11\pi}{6}, -2\right)$, $\frac{d^2y}{dx^2} = 2 > 0$: minimum point	

7i	B(4.5,0)	
	$x^2 - 8x = 2x - 9$	
	(x-9)(x-1) = 0	
	x = 1 or $x = 9$	
	A(1,-7) and $C(9,9)$	
7ii	Area below x-axis = $-\int_0^1 x^2 - 8x dx + \frac{1}{2} \times 3.5 \times 7 = -\left[\frac{x^3}{3} - 4x^2\right]_0^1 + \frac{49}{4} = \frac{191}{12} \text{ units}^2$	
	Area above x-axis = $\frac{1}{2} \times 9 \times 4.5 - \int_{8}^{9} x^2 - 8x dx = \frac{81}{4} - \left[\frac{x^3}{3} - 4x^2 \right]_{8}^{9} = \frac{191}{12} units^2$	
	Total area = $\frac{191}{12} + \frac{191}{12} = \frac{191}{6}$ or $31.8units^2 (3sf)$	
8i	$\frac{dv}{dt} = -\frac{1}{5}ke^{-\frac{1}{5}t}$	
	$-2 = -\frac{1}{5}ke^{0}$	
	k = 10 (shown)	
8ii	$v = 10e^{-\frac{1}{5}t} - 2$	
	Given $v = 0$, $\frac{1}{5} = e^{-\frac{1}{5}t}$	
	$t = 5 \ln 5$	
	$s = \int_0^{5\ln 5} 10e^{-\frac{1}{5}t} - 2dt = \left[-50e^{-\frac{1}{5}t} - 2t \right]_0^{5\ln 5} = 23.9m (3s.f.)$	
8iii	When $t = 0$, $s = 0 \implies c = 50$	
	$s = -50e^{-\frac{1}{5}t} - 2t + 50$	
	When $t = 24s$, $s = -50e^{-\frac{1}{5}(24)} - 2(24) + 50 = 1.589$	
	When $t = 25s$, $s = -50e^{-\frac{1}{5}(25)} - 2(25) + 50 = -0.3369$	
	Since the displacement of the particle changes from a positive value.	
	(when $t = 24$) to a negative value (when $t = 25$), the particle passes through O at some instant during the twenty-fifth sec. [A1]	

9a	$LHS: \frac{2\sin A\cos A + 2\cos^2 A}{2\sin A\cos A - 2\sin^2 A} = \frac{\cos A(\sin A + \cos A)}{\sin A(\cos A - \sin A)} = \frac{1}{\tan A} \times \frac{\frac{\sin A}{\cos A} + 1}{1 - \frac{\sin A}{\cos A}}$ $= \frac{1}{\tan A} \times \frac{\frac{\tan A + \tan 45}{\cos A}}{1 - \tan A \tan 45}$ $= \frac{\tan(45^\circ + A)}{\tan A} (proven)$
9bi	$(\sin\theta - \cos\theta)^2 = \frac{9}{16}$ $1 - 2\sin\theta\cos\theta = \frac{9}{16}$ $\sin\theta\cos\theta = \frac{7}{32} (shown)$
9bii	$7\cot\theta + 7\tan\theta = \frac{7\cos^2\theta + 7\sin^2\theta}{\sin\theta\cos\theta} = \frac{7}{\frac{7}{32}} = 32$
10i	$h = 2(1 - \cos kt)$. Since the diameter of the carousel = max value of h , $h = 2(1 - (-1)) = 4$ m
10ii	Period = 20 s $\frac{2\pi}{k} = 20$ $k = \frac{\pi}{10} rad / s (shown)$
10iii	$1 = 2(1 - \cos\frac{\pi}{10}t)$ $\frac{1}{2} = \cos\frac{\pi}{10}t$ $basic \Delta = \frac{\pi}{3}$ $\frac{\pi}{10}t = \frac{\pi}{3}, \frac{5\pi}{3}$ $t = \frac{10}{3}, \frac{50}{3}$ Not able to view: $\frac{50}{3} - \frac{10}{3} = \frac{40}{3}s$ or $13.3 s (3s.f.)$

11a	~ - 4 · 1/(2.0) · b - 2 · · · · · 0	
	a = -4; $M(-2,0)$; $b = 2$; $c = 0$	İ
11bi	$x^2 + 2x = x^2 - 4x + 4$	
1101		i
	$x = \frac{2}{3}$	
	$y = -(x - \frac{2}{3})^2 + k$ $0 = -(x - \frac{2}{3})^2 + k$	
	$0 = -(x - \frac{2}{3})^2 + k$	
	$k = \frac{16}{9}$	
	$N(\frac{2}{3}, \frac{16}{9})$	
111.22	2 16	
11bii	$\Rightarrow y = -\left(x - \frac{2}{3}\right)^2 + \frac{16}{9}$	
	$m = -1$; $n = \frac{4}{3}$; $r = \frac{4}{3}$	
12	r r 1 1	
	$2^{5r}3^{5r}2^{-\frac{r}{2}}3^{-\frac{r}{2}} = 2^{\frac{1}{2r}}3^{\frac{1}{2r}}$	1
	$5r - \frac{r}{2} = \frac{1}{2r}$	Ī
		ı
	$r^2 = \frac{1}{9}$	
	$r = \frac{1}{3}$ or $-\frac{1}{3}$ (reject, $r > 0$)	