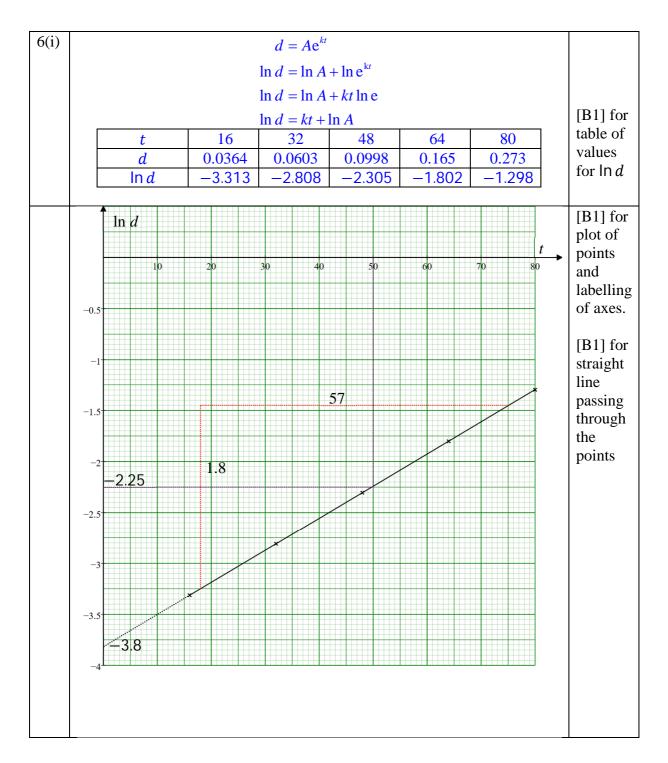
1	Given that $f(x) = \frac{3(3-4x)^2}{2\sqrt{3-4x}}$, find $f'(x)$. $f(x) = \frac{3(3-4x)^{\frac{3}{2}}}{2}$	[3]	
	$f(x) = \frac{3(3-4x)^{\frac{3}{2}}}{2}$		
	f'(x) = $\frac{3}{2} \left(\frac{3}{2}\right) (3-4x)^{\frac{1}{2}} (-4)$	[M2]	
	$=-9(3-4x)^{\frac{1}{2}}$	[A1]	
2	The total surface area of a spherical ball of ice is decreasing at a rate of $2 \text{ cm}^2/\text{s}$. Find the rate		
	of change of the volume when its radius is 0.5 cm. [Volume of sphere = $\frac{4}{3}\pi r^3$; total surface area of sphere = $4\pi r^2$] [5]		
	$A = 4\pi r^{2}$ $\frac{dA}{dr} = 8\pi r$ $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$		
	$-2 = 8\pi (0.5) \times \frac{dr}{dt}$ $\frac{dr}{dt} = \frac{1}{8\pi (0.5)} \times -2$ $= -\frac{1}{2\pi} \text{ cm/s}$	$[M1 - connected rates of change]$ $[M1 - \frac{dr}{dt}]$	
	$V = \frac{4}{3}\pi r^{3}$ $\frac{dV}{dr} = 4\pi r^{2}$ $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$	$[M1 - \frac{dA}{dr} = 8\pi r \text{ and } \frac{dV}{dr} = 4\pi r^2]$	
	$=4\pi(0.5)^2 \times -\frac{1}{2\pi}$ $=-\frac{1}{2}cm^3/s$	[M1 – connected rates of change]	
	The rate of change of volume at $r = 0.5$ cm is -	$-\frac{1}{2}cm^3/s$. [A1 – with units and statements]	

2023 4E Additional Mathematics WA2 Marking Scheme

3	It is g	given that $y = (3x+1)\sqrt{2x-1}$.		
	(i)	Show that $\frac{dy}{dx}$ can be written in the form $\frac{mx+n}{\sqrt{2x-1}}$ where <i>m</i> and <i>n</i> are integers. [3]		
		$y = (3x+1)\sqrt{2x-1}$ $\frac{dy}{dx} = (3x+1)\left(\frac{1}{2}\right)(2x-1)^{-\frac{1}{2}}(2) + (2x-1)^{\frac{1}{2}}(3) [M1 - \text{product law}]$ $= (3x+1)(2x-1)^{-\frac{1}{2}} + 3(2x-1)^{\frac{1}{2}}$ $= (2x-1)^{-\frac{1}{2}}[(3x+1)+3(2x-1)] [M1 - \text{factorisation of } (x^2+1)^{-\frac{1}{2}}]$ $= (2x-1)^{-\frac{1}{2}}(3x+1+6x-3)$ $= (2x-1)^{-\frac{1}{2}}(9x-2)$ $= \frac{9x-2}{\sqrt{2x-1}} [A1]$		
	(ii)	Show that y is an increasing for $x > \frac{1}{2}$. [2]		
		For the numerator, when $x > \frac{1}{2}$, $9x > \frac{9}{2}$ $9x - 2 > \frac{7}{2}$ For the denominator, when $x > \frac{1}{2}$, 2x > 1 2x - 1 > 0 $\sqrt{2x - 1} > 0$ [M1 – for both numerator and denominator] Since $9x - 2 > 0$ and $\sqrt{2x - 1} > 0$, $\frac{dy}{dx} > 0$ and y is an increasing function. [A1]		

4	A cu	A curve has the equation $y = \frac{2-x}{3x-4}, x \neq \frac{4}{3}$.		
	(i)	Find an expression for $\frac{dy}{dx}$. [2]		
		$\frac{dy}{dx} = \frac{(3x-4)(-1)-(2-x)(3)}{(3x-4)^2}$ [M1 - quotient rule] $= \frac{-3x+4-6+3x}{(3x-4)^2}$		
		$=\frac{-2}{(3x-4)^2}$ [A1]		
	(ii)	Find the coordinates of the points on the curve where the normal is parallel to the line $2y-16x = 3$. [3]		
		$y = 8x + \frac{3}{2}$ Gradient of normal = 8 Gradient of tangent = $-\frac{1}{8}$ $\frac{dy}{dx}$ = $-\frac{1}{8}$ $\frac{-2}{(3x-4)^2}$ = $-\frac{1}{8}$ [M1 - equate gradient of tangent to $\frac{dy}{dx}$] [M1] $(3x-4)^2 = 16$ $3x-4 = \pm 4$ $x = \frac{8}{3}$ or $x = 0$ [M1]		
		When $x = \frac{8}{3}$, $y = \frac{2 - \left(\frac{8}{3}\right)}{3\left(\frac{8}{3}\right) - 4} = -\frac{1}{6}$ When $x = 0$, $y = \frac{2 - 0}{3(0) - 4} = -\frac{1}{2}$		

	The coordinates are $\left(\frac{8}{3}, -\frac{1}{6}\right)$ and $\left(0, -\frac{1}{2}\right)$.	[A1 for both]
5	$y = cx^{3} + dx$ $\frac{y}{x} = cx^{2} + d$ $c = \frac{8-5}{7-4}$ $= 1$ $5 = 1(4) + d$ $d = 1$	 [M1] for dividing by x on both sides. [M1] for finding gradient. [A1] [A1]



6(ii)	From the graph, the vertical intercept,	[B1] <i>A</i>
	$\ln A = -3.8$	accept
	A = 0.0224	0.0213 to
	From the graph, the gradient,	0.0235
	$b = \frac{-3.25 - (-1.45)}{18 - 75}$ $= \frac{3}{95}$ $= 0.0316 (3 \text{ s.f})$	[M1] for finding 2 convenient points to find gradient.
		[A1] for <i>b</i> between 0.0310 to 0.0320
6(iii)	Method 1:	
	When $t = 50$,	
	$d = e^{-3.8} e^{\frac{3}{95} \times 50}$ = 0.108 (3 s.f)	[M1] [A1]
	Method 2: From the graph,	[M1] for
	$\ln d = -2.25$	reading from
	d = 0.105 (3 s.f)	graph [A1] (accept 0.100-0.111)