
Section A

Answer all questions.

		Writ	te your answe		es provide	d at the end o	f the Secti	on.	
1	Wh	ich statem	nent describes	ionic bonding	g?				
	A	a lattice c	of ions in a se	a of electrons	i				
	В	electrosta	atic attraction	between opp	ositely cha	arged ions			
	С	the sharir	ng of electron	s between ato	oms to gai	n a noble gas	configurat	ion	
	D	the transf	fer of electron	s from atoms	of a non-r	metal to the at	oms of a n	netal	
2	Wh	ich two sta	atements abou	ut a covalent	bond are o	correct?			
		1	It can be for	med between	two meta	l atoms.			
		2	It can be for	med between	two non-r	metal atoms.			
		3	It is formed I	by the transfe	r of electro	ons between a	atoms.		
		4	It is formed I	by sharing ele	ectrons be	tween atoms.			
	A	1 and 3	В	1 and 4	С	2 and 3	D	2 and 4	
3	Tw	o statemer	nts about meta	als are given.					
	1	Metals	s contain a lat	tice of negativ	e ions in	a 'sea of elect	rons'.		
	2	The el		uctivity of met	als is due	to the mobility	of the ele	ctrons in the	
	Wh	ich is corre	ect?						
	A	Both state	ements are co	orrect and sta	tement 1	explains stater	ment 2.		
	В	Both statements are correct but statement 1 does not explain statement 2.							
	С	Statemen	nt 1 is correct	and statemer	nt 2 is inco	rrect.			
	D	Statemen	nt 2 is correct	and statemer	nt 1 is inco	rrect.			

- 4 What happens when sodium chloride melts?
 - A Covalent bonds are broken.
 - **B** Electrons are released from atoms.
 - **C** Electrostatic forces of attraction between ions are overcome.
 - **D** Molecules are separated into ions.
- **5** What is the 'dot-and-cross' diagram for NC*l*₃?

Question	1	2	3	4	5
Answer					

Section B

Answer **all** questions. Write your answers in the spaces provided.

6	Writ	e a chemical equation, including state symbols , for each of the following reactions.	
	(a)	Solid calcium carbonate decomposes to form solid calcium oxide and carbon dioxide gas.	
		[2	2]
	(b)	Solid sodium metal reacts explosively with water to form aqueous sodium hydroxide and hydrogen gas.	
		[2	2]
	(c)	Methane gas (CH ₄) burns in oxygen to form carbon dioxide and water vapour.	
		[2	2]
		[Total: 6	3]
7		mond and graphite both consist of carbon atoms bonded together. ir structures are shown below.	
	Bv r	diamond graphite referring to their structures, suggest an explanation for the following uses of diamond	
	-	graphite.	
	(a)	Diamond is used in drill bits for drilling through rocks.	
			21

(b) Graphite is used as a lubricant.

[2]

[Total: 4]

Section C

Answer all questions. Write your answers in the spaces provided.

For Examiner's Use

8 (a) In the early nineteenth century, John Dalton, a British chemist, developed symbols and used them to represent elements and compounds. This was the beginning of

atomic theor	ry.	oompoundo. The was an	o bogining of
Dalton's syn	nbols for some elements		
carbon	hydrogen	nitrogen	OXVIDED
carbon	nydrogen	mirogen	oxygen
Dalton's for	mulae for some compounds		
	name of compound	Dalton's formula	
	carbon monoxide		
	ammonia	$\odot \bigcirc$	
	water	\odot	
Some of our	r modern formulae for compour ect.	nds show that Dalton's fo	ormulae were not
	ow Dalton's formulae for carb their modern formulae.	oon monoxide, ammonia	a and water
			[4]

(b) Chemists today develop code systems to make computer processing easier for research. One such code system uses proton numbers, in place of symbols, to represent chemical formulae. The following examples illustrate this code system.

For Examiner's Use

name	formula	code
iron(II) bromide	FeBr ₂	26, 35(2)
aluminium oxide	Al ₂ O ₃	13(2), 8(3)
sodium chloride	NaC <i>l</i>	11, 17

Use this system to complete the table below.

name	formula	code
	KBr	
		29, 6, 8(3)
sulfur dioxide		

[6]

[Total: 10]

9 The table gives some information about the first ten elements in the Periodic Table and the compounds that they form with chlorine.

Symbol	Н	He	Li	Ве	В	С	N	0	F	Ne
Proton Number	1	2	3	4	5	6	7	8	9	10
Formula of chloride	HC <i>l</i>	-	LiC <i>l</i>	?	BCl ₃	CCl ₄	NCl ₃	OCl ₂	FC <i>l</i>	1
Melting point of chloride / °C	-114	-	614	410	-107	-23	-37	-20	-154	1
Boiling point of chloride / °C	-85	-	1382	547	13	77	71	2	-101	1

(a)	Why are no data given for the chlorides of helium and neon?	
		[4]

(b)	Use the	information	in	the	table	to	predict	the	formula	for	the	chloride	of
	beryllium												

[1]

(c) Draw a 'dot-and-cross' diagram to show the arrangement of the outer shell electrons in the chloride of lithium, LiCl.

For Examiner's Use

(d)	Draw a 'dot-and-cross' diagram to show the arrangement of the outer shell electrons in the chloride of fluorine, FCl.
	[2]
(e)	Explain, in terms of bonding and structure , why LiC l has a higher melting and boiling point than FC l .
	[3]
	[Total: 10]
	[Total: Toj
*****	**************************************