Question 1 – Topic : Numbers and Proofs

1.	Let $f(n) = 13^{n+1} (6n+7)-1$. By considering $f(k+1)-f(k)$, where $k \in \mathbb{Z}^+$, prove using	
	Mathematical Induction that $f(n)$ is divisible by 18 for every positive integer n .	[6]

Solution

Let P_n be the statement "f(n) is divisible by 18", where $n \in \mathbb{Z}^+$.

correct P_n , Induction Hypothesis and Inductive Step

show base case P₁ is true

When n = 1,

 $f(1) = 13^2(6+7) - 1 = 2196 = 18(122)$ which is divisible by 18.

 \therefore P₁ is true.

Assume P(k) is true for some $k \in \mathbb{Z}^+$

i.e. $f(k) = 13^{k+1}(6k+7)-1$ is divisible by 18

i.e. f(k) = 18m for some $m \in \mathbb{Z}$

To show P(k+1) is true, i.e. f(k+1)=18p for some $p \in \mathbb{Z}$

Consider

$$f(k+1)-f(k) = 13^{k+2} [6(k+1)+7]-1-[13^{k+1}(6k+7)-1]$$

$$= 13^{k+2} (6k+13)-13^{k+1}(6k+7)$$

$$= 13^{k+1} (78k+169-6k-7)$$
form expression for $f(k+1)-f(k)$

$$= 13^{k+1} (72k+162)$$

$$= 18(13^{k+1})(4k+9)$$

$$f(k+1) = f(k) + 18(13^{k+1})(4k+9)$$

$$= 18m + 18(13^{k+1})(4k+9)$$

$$= 18p,$$
where $p = m + (13^{k+1})(4k+9) \in \mathbb{Z}$

 \therefore P_k is true \Rightarrow P_{k+1} is true

Since P_1 is true, and P_k is true $\Rightarrow P_{k+1}$ is true, we conclude by Mathematical Induction that P_n is true for all $n \in \mathbb{Z}^+$.

Question 2 – Topic : Functions and Graphs

Quesi	11011 2 -	- ropic	e: Functions and Graphs	
2.	(a)	For a	ny real number x , the largest integer less than or equal to x is denoted by $\lfloor x \rfloor$.	
		For e	xample, $\lfloor 3.7 \rfloor = 3$ and $\lfloor 4 \rfloor = 4$.	
		(i)	Use a sketch graph of $y = \lfloor x \rfloor$ for $0 \le x < 5$ to evaluate $\int_0^5 \lfloor x \rfloor dx$.	[2]
			Solution	
			y = x	
			$y = \lfloor x \rfloor, \ 0 \le x < 5$ x	
			(graph/sketch)	
			$\int_0^5 \lfloor x \rfloor dx = \text{Sum of areas of the rectangles shown}$	
			= 0 + 1 + 2 + 3 + 4 $= 10$	
			-10	

2.	(a)	(ii)	Use a sketch graph of $y = \lfloor e^x \rfloor$ for $0 \le x < \ln n$, where <i>n</i> is an integer, to	
			show that $\int_0^{\ln n} \left[e^x \right] dx = n \ln n - \ln(n!)$.	[3]

Solution

(graph/sketch)

$$\int_0^{\ln n} \left[e^x \right] dx$$

= Sum of areas of the rectangles shown

$$= 1(\ln 2 - \ln 1) + 2(\ln 3 - \ln 2) + 3(\ln 4 - \ln 3) + \dots + (n-1)(\ln n - \ln(n-1))$$

$$=$$
 $-\ln 1$

$$-\ln 2$$

$$-\ln 1$$
 $-\ln 2$ $-\ln 3$... + $-\ln (n-1)$

$$-\ln(n-1)$$

$$-\ln n$$

$$+ n \ln n$$

$$= -\ln(n!) + n\ln n \quad (shown)$$

2.	(a)	(iii)	Hence, show that $n! \ge n^n e^{1-n}$.	[3]
			Solution	
			Since $\left[e^x \right] \leq e^x$,	
			$\int_0^{\ln n} \left[e^x \right] dx \le \int_0^{\ln n} e^x dx$	
			$\Rightarrow -\ln(n!) + n\ln n \le \left[e^x\right]_{x=0}^{x=\ln n}$	
			$=e^{\ln n}-e^0$	
			= n - 1 (evaluate definite integral)	
			$\Rightarrow \qquad \ln(n!) \ge n \ln n + 1 - n$	
			$\ln(n!) \ge \ln n^n + \ln e^{1-n}$	
			$ln(n!) \ge ln(n^n e^{1-n})$ (rewrite and take exponential)	
			$n! \ge n^n e^{1-n}$ (shown)	

2.	(b)	Find the exact value of the integral $\int_{-2}^{2} \sqrt{9 - x^2} \left(x^3 \cos \frac{x}{2} + \frac{1}{2} \right) dx$.	[4]
----	-----	--	-----

Solution

$$\int_{-2}^{2} \sqrt{9 - x^{2}} \left(x^{3} \cos \frac{x}{2} + \frac{1}{2} \right) dx$$

$$= \int_{-2}^{2} \sqrt{9 - x^{2}} \left(x^{3} \cos \frac{x}{2} \right) dx + \frac{1}{2} \underbrace{\int_{-2}^{2} \sqrt{9 - x^{2}} dx}_{I_{2}}$$
 (break down integral)

Let
$$f(x) = \sqrt{9 - x^2} \left(x^3 \cos \frac{x}{2} \right)$$
. Then,

$$f(-x) = \sqrt{9 - (-x)^2} \left((-x)^3 \cos \frac{-x}{2} \right)$$

$$=-\sqrt{9-x^2}\left(x^3\cos\frac{x}{2}\right) = -f(x)$$

Since the integrand in I_1 is an odd function, $\therefore I_1 = 0$.

(use of odd function)

$$y^2 \Leftrightarrow y^2 = 9 - x^2$$

$$\Leftrightarrow x^2 + y^2 = 3^2$$

a semi-circular arc centred abt. origin O with radius 3

(use of area of semi-circle)

$$I_2 = \int_{-2}^2 \sqrt{9 - x^2} dx$$

$$= 2 \int_0^2 \sqrt{9 - x^2} dx$$

$$= 2 \left[(\text{Area of sector}) + (\text{Area of right-} \perp \Delta) \right]$$

$$= 2 \left[\frac{1}{2} \left(3^2 \right) \sin^{-1} \left(\frac{2}{3} \right) + \frac{1}{2} (2) \sqrt{5} \right]$$

$$= 2 \left[\frac{9}{2} \sin^{-1} \left(\frac{2}{3} \right) + \sqrt{5} \right]$$

$$\therefore \text{ Required integral} = I_1 + \frac{1}{2}I_2 = \frac{9}{2}\sin^{-1}\left(\frac{2}{3}\right) + \sqrt{5}$$

Question 3 – Topic : Counting

$\overline{}$	1	-digit number uses only digits 1, 2 and 3. It does not contain any occurrence of '12' or '21'. here be T_n such numbers, with X_n of these having first digit 1 and Y_n having first digit 3.		
	(i)	Prove that, for $n \ge 2$, (a) $X_n = X_{n-1} + Y_{n-1}$, (b) $Y_n = 2X_{n-1} + Y_{n-1}$.	[1] [2]	
		Solution		
		 (a) To count X_n, consider 2 cases: (explain 2 cases) the 2nd digit is 1 so there are X_{n-1} ways to write the 2nd to nth digits the 2nd digit is 3 so there are Y_{n-1} ways to write the 2nd to nth digits X_n = X_{n-1} + Y_{n-1} (by Addition Principle) 		
		(b) Define Z_n to be the number of <i>n</i> -digit numbers from T_n with first digit 2. By symmetry, $Z_n = X_n$		
		To count Y_n , consider 3 cases: (explain 3 cases) • the 2nd digit is 1 so there are X_{n-1} ways to write the 2^{nd} to n^{th} digits • the 2nd digit is 2 so there are Z_{n-1} ways to write the 2^{nd} to n^{th} digits • the 2nd digit is 3 so there are Y_{n-1} ways to write the 2^{nd} to n^{th} digits		
		$Y_n = X_{n-1} + Y_{n-1} + Z_{n-1}$ (by Addition Principle) = $2X_{n-1} + Y_{n-1}$ (by Symmetry Principle) (use symmetry principle to deduce answer)		
3.	(ii)	Hence, find a recurrence relation for Y_{n+1} in terms of Y_n and Y_{n-1} for $n \ge 2$.	[2]	
		Solution Using (b), $Y_n = 2X_{n-1} + Y_{n-1}$ $\Rightarrow X_{n-1} = \frac{Y_n - Y_{n-1}}{2} \text{ and } X_n = \frac{Y_{n+1} - Y_n}{2}$ Using (a), $X_n = X_{n-1} + Y_{n-1}$ $\frac{Y_{n+1} - Y_n}{2} = \frac{Y_n - Y_{n-1}}{2} + Y_{n-1}$ $Y_{n+1} - Y_n = Y_n - Y_{n-1} + 2Y_{n-1}$ (expression entirely in Y) $Y_{n+1} = 2Y_n + Y_{n-1}$		

3.	(iii)	Prove that $Y_n = \frac{1}{2} (1 + \sqrt{2})^n + \frac{1}{2} (1 - \sqrt{2})^n$ for $n \in \mathbb{Z}^+$.	[5]
		Solution Let $P(n)$ be the statement that $Y_n = \frac{1}{2} \left(1 + \sqrt{2}\right)^n + \frac{1}{2} \left(1 - \sqrt{2}\right)^n$ for $n \in \mathbb{Z}^+$. The 1-digit number starting with 3 is 3, and the 2 digit numbers starting with 3 is 31, 32, 33. (explain LHS) $Y_1 = 1 \text{ and } \frac{1}{2} \left(1 + \sqrt{2}\right)^1 + \frac{1}{2} \left(1 - \sqrt{2}\right)^1 = 1$ $Y_2 = 3 \text{ and } \frac{1}{2} \left(1 + \sqrt{2}\right)^2 + \frac{1}{2} \left(1 - \sqrt{2}\right)^2 = \frac{1}{2} \left(3 + 2\sqrt{2}\right) + \frac{1}{2} \left(3 - 2\sqrt{2}\right) = 3$ Therefore, $P(1)$ and $P(2)$ are true. (2 base cases) Suppose $P(k)$ and $P(k+1)$ are true for some $k \in \mathbb{Z}^+$: $Y_k = \frac{1}{2} \left(1 + \sqrt{2}\right)^k + \frac{1}{2} \left(1 - \sqrt{2}\right)^k$ and $Y_{k+1} = \frac{1}{2} \left(1 + \sqrt{2}\right)^{k+1} + \frac{1}{2} \left(1 - \sqrt{2}\right)^{k+1}$ (induction hypothesis)	
		We want to prove $P(k+2)$ is true: $Y_{k+2} = \frac{1}{2} \left(1 + \sqrt{2}\right)^{k+2} + \frac{1}{2} \left(1 - \sqrt{2}\right)^{k+2}$ $Y_{k+2} = 2Y_{k+1} + Y_k$ $= \left(1 + \sqrt{2}\right)^{k+1} + \left(1 - \sqrt{2}\right)^{k+1} + \frac{1}{2} \left(1 + \sqrt{2}\right)^k + \frac{1}{2} \left(1 - \sqrt{2}\right)^k$ $= \frac{1}{2} \left(1 + \sqrt{2}\right)^k \left(2 + 2\sqrt{2} + 1\right) + \frac{1}{2} \left(1 - \sqrt{2}\right)^k \left(2 - 2\sqrt{2} + 1\right)$ $= \frac{1}{2} \left(1 + \sqrt{2}\right)^k \left(1 + \sqrt{2}\right)^2 + \frac{1}{2} \left(1 - \sqrt{2}\right)^k \left(1 - \sqrt{2}\right)^2$ $= \frac{1}{2} \left(1 + \sqrt{2}\right)^{k+2} + \frac{1}{2} \left(1 - \sqrt{2}\right)^{k+2}$ (induction step)	
		Since $P(1)$ and $P(2)$ are true, and (for $k \in \mathbb{Z}^+$, $P(k)$ and $P(k+1)$ are true $\Rightarrow P(k+2)$ is true), by the principle of mathematical induction, (for $n \in \mathbb{Z}^+$, $P(n)$ is true). (conclusion)	

Alternative inductive step

$$\begin{split} Y_{k+2} &= 2Y_{k+1} + Y_k \\ &= \left(1 + \sqrt{2}\right)^{k+1} + \left(1 - \sqrt{2}\right)^{k+1} + \frac{1}{2}\left(1 + \sqrt{2}\right)^k + \frac{1}{2}\left(1 - \sqrt{2}\right)^k \\ &= \left(1 + \sqrt{2}\right)^{k+1} \left(1 + \frac{1}{2\left(1 + \sqrt{2}\right)}\right) + \left(1 - \sqrt{2}\right)^{k+1} \left(1 + \frac{1}{2\left(1 - \sqrt{2}\right)}\right) \\ &= \left(1 + \sqrt{2}\right)^{k+1} \left(1 + \frac{-1 + \sqrt{2}}{2}\right) + \left(1 - \sqrt{2}\right)^{k+1} \left(1 - \frac{1 + \sqrt{2}}{2}\right) \\ &= \left(1 + \sqrt{2}\right)^{k+1} \left(\frac{1 + \sqrt{2}}{2}\right) + \left(1 - \sqrt{2}\right)^{k+1} \left(\frac{1 - \sqrt{2}}{2}\right) \\ &= \frac{1}{2}\left(1 + \sqrt{2}\right)^{k+2} + \frac{1}{2}\left(1 - \sqrt{2}\right)^{k+2} \end{split}$$

3.	(iv)	Find and simplify an expression for T_n for $n \in \mathbb{Z}^+$.	[2]
		Solution	
		$T_n = X_n + Z_n + Y_n$ $= 2X_n + Y_n$	
		$=2\left(\frac{Y_{n+1}-Y_n}{2}\right)+Y_n$ (symmetry or use (ii))	
		$=Y_{n+1}$	
		$= \frac{1}{2} \left(1 + \sqrt{2} \right)^{n+1} + \frac{1}{2} \left(1 - \sqrt{2} \right)^{n+1}$	
		Alternative solution	
		For any $n \in \mathbb{Z}^+$, $n \ge 2$,	
		$Y_n = X_{n-1} + Y_{n-1} + Z_{n-1}$ (by Addition Principle, from (ib))	
		$=T_{n-1}$	
		$T_n = Y_{n+1}$	
		$= \frac{1}{2} \left(1 + \sqrt{2} \right)^{n+1} + \frac{1}{2} \left(1 - \sqrt{2} \right)^{n+1}$	

Quest	tion 4 – Topic : Functions and Graphs			
4.	The E	Bernoulli polynomials, $B_n(x)$, where $n = 0, 1, 2,$, are defined by $B_0(x) = 1$ and,		
	for n	≥ 1 , $\frac{dB_n(x)}{dx} = nB_{n-1}(x)$ and $\int_0^1 B_n(x) dx = 0$.		
	(i)	Show that $B_4(x) = x^2(x-1)^2 + A$, where A is a constant (that need not be evaluated). [4]		
		Solution		
		$\mathbf{B}_0(x) = 1$		
		$\frac{dB_1(x)}{dx} = B_0(x) = 1 \implies B_1(x) = x + k$, where k is a constant.		
		$\therefore \int_0^1 \mathbf{B}_1(x) dx = 0, \left[\frac{x^2}{2} + kx \right]_{x=0}^{x=1} = 0, \frac{1}{2} + k = 0, k = -\frac{1}{2}.$		
		$\therefore B_1(x) = x - \frac{1}{2}.$		
		$\frac{dB_2(x)}{dx} = 2B_1(x) = 2x - 1 \implies B_2(x) = x^2 - x + k', \text{ where } k' \text{ is a constant.}$		
		$\therefore \int_0^1 \mathbf{B}_2(x) dx = 0, \left[\frac{x^3}{3} - \frac{x^2}{2} + k'x \right]_{x=0}^{x=1} = 0, \frac{1}{3} - \frac{1}{2} + k' = 0, k' = \frac{1}{6}.$		
		$\therefore B_2(x) = x^2 - x + \frac{1}{6}.$		
		$\frac{dB_3(x)}{dx} = 3B_2(x) = 3x^2 - 3x + \frac{1}{2} \implies B_3(x) = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x + k'', \text{ where } k'' \text{ is a constant.}$		
		$\therefore \int_0^1 \mathbf{B}_3(x) dx = 0, \left[\frac{x^4}{4} - \frac{x^3}{2} + \frac{x^2}{4} + k'' x \right]_{x=0}^{x=1} = 0, \frac{1}{4} - \frac{1}{2} + \frac{1}{4} + k'' = 0, k'' = 0.$		
		$\therefore B_3(x) = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x.$		
		$\frac{dB_4(x)}{dx} = 4B_3(x) = 4x^3 - 6x^2 + 2x \implies B_4(x) = x^4 - 2x^3 + x^2 + k''', \text{ where } k''' \text{ is a constant.}$		
		$\therefore B_4(x) = x^2(x-1)^2 + A, \text{ where } A \text{ is a constant.}$		
		(shown)		

4.	(ii)	Show that, for $n \ge 2$, $B_n(1) - B_n(0) = 0$.	[2]
		Solution	
		For any integer $n \ge 2$,	
		$B_n(1) - B_n(0) = [B_n(x)]_{x=0}^{x=1}$	
		$= \int_0^1 \frac{d\mathbf{B}_n(x)}{dx} dx$ (rewrite expression)	
		$= \int_0^1 n \mathbf{B}_{n-1}(x) \mathrm{d}x$	
		$= n \left(\int_0^1 \mathbf{B}_{n-1}(x) dx \right)$ (apply conditions in the definition)	
		$= n(0)$: $n-1 \ge 1$	
		= 0 (shown).	

4.	(iii)	Show that $B_n(x+1) - B_n(x) = nx^{n-1}$ for all positive integers n .	[4]
		Solution	
		For any positive integer n, let P_n denote the statement $B_n(x+1) - B_n(x) = nx^{n-1}$.	
		Base Case:	
		LHS = B ₁ (x+1) - B ₁ (x) = $\left[(x+1) - \frac{1}{2} \right] - \left[x - \frac{1}{2} \right]$	
		=1	
		RHS = $(1)x^{1-1} = x^0 = 1$	
		$\therefore B_1(x+1) - B_1(x) = (1)x^{1-1}. \text{ i.e. } P_1.$ (show base case)	
		Induction Step: Consider any positive integer k .	
		Suppose P_k i.e. $B_k(x+1) - B_k(x) = kx^{k-1}$. Then,	
		$\frac{\mathrm{d}}{\mathrm{d}x} \left[\mathbf{B}_{k+1}(x+1) - \mathbf{B}_{k+1}(x) \right]$	
		$= (k+1) B_k(x+1) (1) - (k+1) B_k(x)$	
		$= (k+1) \left[\mathbf{B}_k(x+1) - \mathbf{B}_k(x) \right]$ $= (k+1) \left[\mathbf{B}_k(x+1) - \mathbf{B}_k(x) \right]$ (contact the sixthesis)	
		$= (k+1) \left[kx^{k-1} \right]$ (use induction hypothesis)	
		$= (k+1) \frac{\mathrm{d}}{\mathrm{d}x} \left[x^k \right]$	
		$= \frac{\mathrm{d}}{\mathrm{d}x} \Big[(k+1)x^k \Big]$	
		:. $B_{k+1}(x+1) - B_{k+1}(x) = (k+1)x^k + C$, where C is a constant	
		When $x = 0$,	
		$\underbrace{B_{k+1}(1) - B_{k+1}(0)}_{=0 \text{ (result of part ii)}} = \underbrace{(k+1)(0)^k}_{=0} + C$ (complete induction step)	
		$=0 \text{ (result of part ii)} \qquad =0$ $\implies C=0$ (complete induction step)	
		$\therefore B_{k+1}(x+1) - B_{k+1}(x) = (k+1)x^k, \text{ i.e. } P_{k+1}.$	
		Since P_k is true, and (for any $k \in \mathbb{Z}^+$, $P_k \Rightarrow P_{k+1}$) (conclusion)	
		By the Principle of Mathematical Induction, (for any $n \in \mathbb{Z}^+$, P_n is true).	
			<u> </u>

4.	(iv)	Hence, for any positive integer N, show that $\sum_{m=1}^{N} m^{n-1} = \frac{1}{n} [B_n(N+1) - B_n(1)], \text{ and}$	
		deduce that $\sum_{m=1}^{N} m^3 = \left(\frac{N(N+1)}{2}\right)^2.$	[3]
		Solution	
		$\sum_{m=1}^{N} m^{n-1} = \frac{1}{n} \sum_{m=1}^{N} n m^{n-1}$	
		$= \frac{1}{n} \sum_{m=1}^{N} \left[B_n(m+1) - B_n(m) \right]$ (rewrite summand as a difference)	
		$=\frac{1}{n}\left[B_n(2)-B_n(1)\right]$	
		$+ B_n(3) - B_n(2)$ $+ B_n(4) - B_n(3)$	
		$\vdots \\ \vdots \\$	
		$+ B_n(N) - B_n(N-1)$ $+ B_n(N+1) - B_n(N)$ (apply method of difference)	
		$\begin{bmatrix} \mathbf{T} \mathbf{D}_n(N+1) - \mathbf{D}_n(N) \end{bmatrix}$ (apply method of difference)	
		$= \frac{1}{n} \left[\mathbf{B}_n(N+1) - \mathbf{B}_n(1) \right] \qquad \text{(shown)}$	
		If $n = 4$, then	
		$\sum_{m=1}^{N} m^3 = \frac{1}{4} \left[B_4(N+1) - B_4(1) \right]$	
		$= \frac{1}{4} \left(\left[x^2 (x-1)^2 + A \right]_{x=N+1} - \left[x^2 (x-1)^2 + A \right]_{x=1} \right)$	
		$= \frac{1}{4} \left(\left[(N+1)^2 (N)^2 + A \right] - A \right) $ (apply $n=4$)	
		$=\frac{1}{4}\left[N(N+1)\right]^2$	
		$= \left[\frac{N(N+1)}{2}\right]^2 \qquad \text{(deduced)}$	

Question 5 – Topic : Counting

5.	(a)	New Chang Lee sells 5 types of puffs: curry, sardine, black-pepper chicken, tuna and yam.	
		Mr. Ong wants to order a total of 26 puffs such that each type is included and there is an even number of puffs of each type. Find the number of ways he can make the order.	[4]
		Solution	
		This is equivalent to distributing 26 identical objects into 5 distinct boxes, such that each box has some object and an even number of objects. (describe distribution – problem identical object, distinct boxes)	
		Which is equivalent to distributing 13 pairs of identical objects into 5 distinct boxes, such that each box has at least 1 pair of objects. (address even)	
		Number of ways = $\binom{13-1}{5-1}$ (expression) = 495	
5.	(b)	4 married couples are randomly seated at a round table with 8 chairs. By using the principle of inclusion and exclusion, find the probability that no wife sits next to her husband.	[4]
		Solution	
		Total no. of circular arrangements without restrictions = $7! = 5040$ (total)	
		Let A_i be the event where the i^{th} couple is sitting together, for $i = 1, 2, 3, 4$.	
		No. of circular arrangements where at least one couple sits together, $= A_1 \cup A_2 \cup A_3 \cup A_4 $	
		$=\sum_{1\leq i\leq 4}\left A_i\right -\sum_{1\leq i< j\leq 4}\left A_i\cap A_j\right +\sum_{1\leq i< j< k\leq 4}\left A_i\cap A_j\cap A_k\right -\sum_{1\leq i< j< k< m\leq 4}\left A_i\cap A_j\cap A_k\cap A_m\right $	
		$ = \binom{4}{1} A_1 - \binom{4}{2} A_1 \cap A_2 + \binom{4}{3} A_1 \cap A_2 \cap A_3 - \binom{4}{4} A_1 \cap A_2 \cap A_3 \cap A_4 $ (PIE)	
		$= \binom{4}{1} \left(6 \times 2^{1} \right) - \binom{4}{2} \left(5 \times 2^{2} \right) + \binom{4}{3} \left(4 \times 2^{3} \right) - \binom{4}{4} \left(3 \times 2^{4} \right)$ No. of circular arrangements $\binom{A_{i}}{A_{i}}, \binom{A_{i} \cap A_{j}}{A_{i}}, \binom{A_{i} \cap A_{j} \cap A_{k}}{\binom{A_{i} \cap A_{j} \cap A_{k} \cap A_{m}}}$	
		= 3552	
		Required probability 3552	
		$=1-\frac{3332}{5040}$	
		$=\frac{31}{105}$	

(c)	Let $a_1, a_2,, a_{10}$ be a sequence of 10 natural numbers.	
	By considering the sums a_1 , $a_1 + a_2$,, $a_1 + a_2 + + a_{10}$, and using the	
	pigeonhole principle, prove that there is a sequence of n consecutive term(s) whose	[5]
	sum is divisible by 10, for some $1 \le n \le 10$.	
	Solution	
	Let $S_1 = a_1$,	
	$S_2 = a_1 + a_2,$	
	$S_{10} = a_1 + a_2 + \ldots + a_{10}.$	
	Case 1: One of the S_i is divisible by 10 (Consider trivial case)	
	• Then $a_1,,a_i$ is the required sequence.	
	Case 2: None of the S_i is divisible by 10.	
	• For all $1 \le i \le 10$, S_i has a remainder of 1, 2, 9 when divided by 10.	
	(reduce to 9 pigeonholes) Principle there exists $1 < i < k < 10$ such that $pp_{-ik} = 10$	
	by pigeomiore principle, there exists $1 \le j < k \le 10^{\circ}$ such that (PP with 10 pigeons and 9 pigeonholes)	
	$S_k \equiv S_j \qquad \text{(mod 10)}$	
	$a_1 + \ldots + a_k \equiv (a_1 + \ldots + a_j) \pmod{10}$	
	$(a_1 + \dots + a_k) - (a_1 + \dots + a_j) \equiv 0$ (RHS zero)	
	$a_{j+1} + \ldots + a_k \equiv 0 \qquad \qquad \text{(mod 10)}$	
	(completing the proof)	
	Then a_{j+1}, \ldots, a_k is the required sequence.	
	(c)	By considering the sums $a_1, a_1 + a_2, \ldots, a_1 + a_2 + \ldots + a_{10}$, and using the pigeonhole principle, prove that there is a sequence of n consecutive term(s) whose sum is divisible by 10, for some $1 \le n \le 10$. Solution Let $S_1 = a_1$, $S_2 = a_1 + a_2$, \vdots $S_{10} = a_1 + a_2 + \ldots + a_{10}$. Case 1: One of the S_i is divisible by 10

Question 6 (MS) – Topic : Numbers and Proofs

6.	(a)	Let p be a prime number and $r, s \in \mathbb{Z}$ such that $0 < r, s < p$.			
		(i)	For any $a \in \mathbb{Z}$, show that $ra \equiv sa \pmod{p}$ if and only if $r = s$.	[3]	
			Solution		
			$(\Leftarrow) r = s$		
			(r-s)a=0		
			$(\Leftarrow) r = s$ $(r - s) a = 0$ $(r - s) a \equiv 0 \pmod{p}$ $ra \equiv sa \pmod{p}$		
			$ra \equiv sa \pmod{p}$		
			$(\Rightarrow) ra \equiv sa \pmod{p}$		
			$p \mid (r-s)a$		
			p (r - s) : euclid's lemma		
			$pq = (r - s)$ for some $q \in \mathbb{Z}$		
			Since $0 < r, s < p$,		
			we have $-p < r - s < p$ implying $q = 0$		
			$\therefore r - s = 0 \Rightarrow r = s$		
			$\therefore ra \equiv sa \pmod{p} \text{ if and only if } r = s.$		
6.	(a)	(ii)	By considering the product $a \times 2a \times 3a \times \times (p-1)a$, prove that for		
			any $a \in \mathbb{Z}$ but not divisible by p , $a^{p-1} \equiv 1 \pmod{p}$ (Fermat's Little Theorem).	[2]	
			Solution		
			$a \times 2a \times 3a \times \times (p-1)a \equiv (p-1)! \pmod{p}$		
			$a \times 2a \times 3a \times \times (p-1)a \equiv (p-1)! \pmod{p}$ $(p-1)! a^{p-1} \equiv (p-1)! \pmod{p}$ $a^{p-1} \equiv 1 \pmod{p}$		
			$a^{p-1} \equiv 1 \pmod{p}$		
6.	(a)	(iii)	Hence, show that for any integers a , b , p divides $ab^p - a^pb$.	[2]	
			Solution		
			$ab^p \equiv ab^{p-1}b \equiv ab \pmod{p}$		
			$a^{p}b \equiv a^{p-1}ab \equiv ab \pmod{p}$ (use Fermat's little theorem for a and b)		
			$ab^p - a^p b \equiv ab - ab \equiv 0 \pmod{p}$		
			$\therefore p \mid (ab^p - a^p b)$		
6.	(b)	Let n	$n, n, k \in \mathbb{Z}^+$ and $\gcd(m, n) = 1$.	[7]	

Prove that $n + m \mid n^2 + km^2$ if and only if $n + m \mid k + 1$.
Solution
$(\Rightarrow)n+m\mid n^2+km^2$
$(n+m)q = n^2 + km^2$ for some $q \in \mathbb{Z}$
$(n+m)q + m^2 - n^2 = (k+1)m^2$
$(n+m)(q+m-n)=(k+1)m^2$
$\therefore (n+m) (k+1)m^2$
Note that $gcd(n+m,m) = gcd(n,m) = 1$
By Euclid's lemma, $(n+m) (k+1)$
$(\Leftarrow)(n+m) k+1$
we have $(n+m) km^2+m^2$
and $(n+m)(n+m)(n-m) = n^2 - m^2$
$\Rightarrow (n+m) km^2 + m^2 + n^2 - m^2 = n^2 + km^2$

Question 7 (MS) – Topic : Inequalities

7.	(a)	(i)	Show that $x + \frac{1}{y} \ge 2\sqrt{\frac{x}{y}}$ for $x, y > 0$.	[1]
			Solution For any $x, y \in \mathbb{R}^+$, $\frac{1}{y} \in \mathbb{R}^+$. By the AM-GM inequality, $\frac{x + \frac{1}{y}}{2} \ge \sqrt{x \left(\frac{1}{y}\right)}$ $x + \frac{1}{y} \ge 2\sqrt{\frac{x}{y}} \text{ (shown)}$ (apply AM-GM ineq.)	
7.	(a)	(ii)	Hence, show that $ \left(x_1 + \frac{1}{x_2} \right) \left(x_2 + \frac{1}{x_3} \right) \left(x_{49} + \frac{1}{x_{50}} \right) \left(x_{50} + \frac{1}{x_1} \right) \ge 2^{50}, \text{ for } x_1, x_2, x_3, \dots, x_{50} > 0. $	[2]
			For any $x_1, x_2, x_3,, x_{50} > 0$, Using part (i), $x_i + \frac{1}{x_j} \ge 2\sqrt{\frac{x_i}{x_j}}$, $i \in \mathbb{Z}^+$, $i, j \ge 1$. LHS = $\left(x_1 + \frac{1}{x_2}\right)\left(x_2 + \frac{1}{x_3}\right)\left(x_{49} + \frac{1}{x_{50}}\right)\left(x_{50} + \frac{1}{x_1}\right)$ $\ge \left(2\sqrt{\frac{x_1}{x_2}}\right)\left(2\sqrt{\frac{x_2}{x_3}}\right)\left(2\sqrt{\frac{x_{49}}{x_{50}}}\right)\left(2\sqrt{\frac{x_{50}}{x_1}}\right)$ [use result of part (ai)] $= 2^{50}\sqrt{\frac{x_1x_2x_3x_{50}}{x_2x_3x_{50}x_1}}$ $= 2^{50}$ (shown)	

7.	(a)	(iii)	Deduce the positive solutions of the system of equations	
			$x_1 + \frac{1}{} = 8$	
			x_2	
			$x_2 + \frac{1}{x_2} = \frac{1}{2}$	
			x_3 2	
			$x_3 + \frac{1}{-} = 8$	
			x_4 .	
			$x_{49} + \frac{1}{11} = 8$	
			x_{50}	
			$x_{50} + \frac{1}{x_1} = \frac{1}{2}$	[6]
			$x_1 2$	[[,]
			Colution	
			Solution	
			$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix} = 0.25 \begin{pmatrix} 1 \end{pmatrix}^{25}$	
			$\left(x_1 + \frac{1}{x_2}\right)\left(x_2 + \frac{1}{x_3}\right)\left(x_{49} + \frac{1}{x_{50}}\right)\left(x_{50} + \frac{1}{x_1}\right) = 8^{25} \times \left(\frac{1}{2}\right)^{25}$ [connect part (ii)]	
			$=2^{75-25}=2^{50}$	
			For the inequality of (ii) to hold at equality,	
			it must be that these inequalities hold at equality:	
			$x_1 + \frac{1}{x_2} \ge 2\sqrt{\frac{x_1}{x_2}} \qquad x_1 = \frac{1}{x_2} \qquad x_1 + \frac{1}{x_2} = 2x_1 = 8 \qquad x_1 = 4$	
			$\frac{x_2}{\sqrt{x_2}}$ $\frac{\sqrt{x_2}}{1}$ 1 1 1	
			$x_2 + \frac{1}{x_3} \ge 2\sqrt{\frac{x_2}{x_3}} \qquad x_2 = \frac{1}{x_3} \qquad x_2 + \frac{1}{x_3} = 2x_2 = \frac{1}{2} \qquad x_2 = \frac{1}{4}$	
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			$\vdots \qquad \Rightarrow \qquad \vdots \qquad \Rightarrow \qquad \vdots$	
			$x_{49} + \frac{1}{x_{49}} \ge 2\sqrt{\frac{x_{49}}{x_{49}}}$ $x_{49} = \frac{1}{x_{50}}$ $x_{49} + \frac{1}{x_{50}} = 2x_{49} = 8$ $x_{49} = 4$	
			$x_{50} \sqrt{x_{50}}$ 1 1 1	
			$x_{50} = \frac{1}{x_{1}} \qquad x_{50} = \frac{1}{x_{1}} \qquad x_{50} + \frac{1}{x_{1}} = 2x_{50} = \frac{1}{2} \qquad x_{50} = \frac{1}{4}$	
			$x_{50} + \frac{1}{x_1} \ge 2\sqrt{\frac{x_{50}}{x_1}} \qquad x_{50} - x_1 \qquad x_{50} - x_1 = 2x_{50} - 2 \qquad x_{50} = \frac{1}{4}$	
			Sub $x = 4$ $x = \frac{1}{1}$ into $x = \pm \frac{1}{1} = \frac{1}{1}$	
			Sub $x_1 = 4$, $x_{50} = \frac{1}{4}$ into $x_{50} + \frac{1}{x_1} = \frac{1}{2}$	
			Then LHS = $x_{50} + \frac{1}{x_1} = \frac{1}{2}$ = RHS (checked)	
			$\begin{vmatrix} x_1 & x_2 \\ x_1 & z \end{vmatrix}$	

7.	(b)	(i)	Let x, y, z be positive real numbers satisfying $xyz = 1$. Determine, with proof, the minimum value of $\frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y}.$	[4]
			Solution From Cauchy-Schwarz inequality, we have $\left[\left(\frac{x}{\sqrt{y+z}}\right)^2 + \left(\frac{y}{\sqrt{z+x}}\right)^2 + \left(\frac{z}{\sqrt{x+y}}\right)^2\right] \left[\left(\sqrt{y+z}\right)^2 + \left(\sqrt{z+x}\right)^2 + \left(\sqrt{x+y}\right)^2\right] \ge (x+y+z)$ $\left[\left(\frac{x}{\sqrt{y+z}}\right)^2 + \left(\frac{y}{\sqrt{z+x}}\right)^2 + \left(\frac{z}{\sqrt{x+y}}\right)^2\right] (y+z+z+x+x+y) \ge (x+y+z)^2$ $\frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y} \ge \frac{(x+y+z)^2}{2(x+y+z)} = \frac{x+y+z}{2}$	
			From AM – GM inequality, $\frac{1}{2}(x+y+z) \ge \frac{1}{2}(3\sqrt[3]{xyz})$ $= \frac{3}{2}$ Hence, $\frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y} \ge \frac{3}{2}$ Equality holds when $x = y = z$. $\Rightarrow xyz = x^3 = 1, x = y = z = 1.$ Check: $\left(\frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y}\right)\Big _{x=y=z=1} = \frac{1^2}{1+1} + \frac{1^2}{1+1} + \frac{1^2}{1+1} = \frac{3}{2}$ Hence, the minimum value of $\frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y} \text{ is } \frac{3}{2}.$	

7.	(b)	(ii)	Hence, prove that if a,b,c are positive real numbers satisfying $abc = 1$, then	
			$\frac{1}{a^3(b+c)} + \frac{1}{b^3(c+a)} + \frac{1}{c^3(a+b)} \ge \frac{3}{2}.$	[2]
			Solution	
			Take $x = \frac{1}{a}, y = \frac{1}{b}, z = \frac{1}{c}$.	
			$\frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y} = \frac{1}{a^2 \left(\frac{1}{b} + \frac{1}{c}\right)} + \frac{1}{b^2 \left(\frac{1}{c} + \frac{1}{a}\right)} + \frac{1}{c^2 \left(\frac{1}{a} + \frac{1}{b}\right)}$	
			$= \frac{1}{a^2 \left(\frac{b+c}{bc}\right)} + \frac{1}{b^2 \left(\frac{c+a}{ac}\right)} + \frac{1}{c^2 \left(\frac{a+b}{ab}\right)}$	
			$= \frac{abc}{a^3(b+c)} + \frac{abc}{b^3(c+a)} + \frac{abc}{c^3(a+b)}$	
			$= \frac{1}{a^{3}(b+c)} + \frac{1}{b^{3}(c+a)} + \frac{1}{c^{3}(a+b)} \ge \frac{3}{2}$	
			Also, $xyz = \frac{1}{a} \frac{1}{b} \frac{1}{c} = \frac{1}{abc} = 1$ (Multiply abc and use abc = 1)	

Question 8 (MS) – Topic: Numbers and Proof

8.	(a)	For each positive integer r, let					
			$a_r = \frac{1}{r+1} + \frac{1}{(r+1)(r+2)} + \frac{1}{(r+1)(r+2)(r+3)} + \dots,$				
			$b_r = \frac{1}{r+1} + \frac{1}{(r+1)^2} + \frac{1}{(r+1)^3} + \dots$				
		(i)	Find b_r in terms of r .	[2]			
			Solution				
			$b_r = \frac{1}{r+1} + \frac{1}{(r+1)^2} + \frac{1}{(r+1)^3} + \dots$ Geometric Series $= \frac{\frac{1}{r+1}}{1 - \frac{1}{r+1}}$ $= \frac{1}{r+1} \times \frac{r+1}{r}$ $= \frac{1}{r}$ (sum-to-infinity of GP) $= \frac{1}{r}$ $= \frac{1}{r}$				
8.	(a)	(ii)	Deduce that $0 < a_r < \frac{1}{r}$.	[2]			
			Solution Since $r > 0$, it is clear that $a_r > 0$. $\frac{1}{(r+1)(r+2)} < \frac{1}{(r+1)^2}$ $\frac{1}{(r+1)(r+2)(r+3)} < \frac{1}{(r+1)^3}$ $\therefore \frac{1}{r+1} + \frac{1}{(r+1)(r+2)} + \frac{1}{(r+1)(r+2)(r+3)} + \dots < \frac{1}{r+1} + \frac{1}{(r+1)^2} + \frac{1}{(r+1)^3} + \dots$ $\therefore a_r < b_r = \frac{1}{r}$ Thus $0 < a_r < \frac{1}{r}$. (shown)				

		Show that $a_r = r!e - \lfloor r!e \rfloor$, where $\lfloor x \rfloor$ denotes the integer part of x .	[3]
		Solution	
		For $r \in \mathbb{Z}^+$,	
		$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{r!} + \frac{1}{(r+1)!} + \frac{1}{(r+2)!} \dots,$	
		$r!e = r! + r! + \frac{r!}{2!} + \frac{r!}{3!} + \dots + \frac{r!}{r!} + \frac{r!}{(r+1)!} + \frac{r!}{(r+2)!} + \dots$	
		$= r! + r! + \frac{r!}{2!} + \frac{r!}{3!} + \dots + \frac{r!}{r!} + \left[\frac{1}{(r+1)} + \frac{1}{(r+2)(r+1)} + \dots \right]$	
		$= r! + r! + \frac{r!}{2!} + \frac{r!}{3!} + \dots + \frac{r!}{r!} + a_r$	
		As $0 < a_r < \frac{1}{r} \le 1$, $0 < a_r < 1$,	
		$r!+r!+\frac{r!}{2!}+\frac{r!}{3!}++\frac{r!}{r!}$ is the integer part of $r!e$. [apply result of (ii)]	
		$r!+r!+\frac{r!}{2!}+\frac{r!}{3!}++\frac{r!}{r!}=\lfloor r!e \rfloor$	
		$\therefore r! \mathbf{e} = \lfloor r! \mathbf{e} \rfloor + a_r$	
		$a_r = r!e - \lfloor r!e \rfloor$ (shown)	
(a)	(iv)	Hence show that e is irrational.	[3]
		Solution	
		Assume to the contrary that e is rational, (proof by contradiction)	
		i.e. there exist positive integers k, m such that $e = \frac{k}{m}$.	
		Then, $m!e = \frac{k}{m} \times m! = k(m-1)! \in \mathbb{Z}$.	
		Thus <i>m</i> !e is an integer.	
		So $\lfloor m!e \rfloor = m!e$, $m!e - \lfloor m!e \rfloor = 0$, $\therefore a_m = 0$ [apply result of (aiii)]	
		But this contradicts the result in (ii) where $a_m > 0$. [apply result of (aii) and obtain a contradiction]	
		Going back to the <u>assumption</u> , ∴ e must be irrational.	
	(a)		$c = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{r!} + \frac{1}{(r+1)!} + \frac{1}{(r+2)!} \dots,$ $r!e = r! + r! + \frac{r!}{2!} + \frac{r!}{3!} + \dots + \frac{r!}{r!} + \frac{r!}{(r+1)!} + \frac{r!}{(r+2)!} + \dots$ $= r! + r! + \frac{r!}{2!} + \frac{r!}{3!} + \dots + \frac{r!}{r!} + \left[\frac{1}{(r+1)} + \frac{1}{(r+2)(r+1)} + \dots \right]$ $= r! + r! + \frac{r!}{2!} + \frac{r!}{3!} + \dots + \frac{r!}{r!} + a_r$ As $0 < a_r < \frac{1}{r} \le 1$, $0 < a_r < 1$, $r! + r! + \frac{r!}{2!} + \frac{r!}{3!} + \dots + \frac{r!}{r!} \text{ is the integer part of } r!e.$ $r! + r! + \frac{r!}{2!} + \frac{r!}{3!} + \dots + \frac{r!}{r!} = \lfloor r!e \rfloor$ $\therefore r!e = \lfloor r!e \rfloor + a_r$ $a_r = r!e - \lfloor r!e \rfloor \text{ (shown)}$ (a) (iv) Hence show that e is irrational. Solution $\frac{Assume}{a_r = r!e} = \frac{k}{r!e} \times m! = k(m-1)!e \mathbb{Z}.$ Then, $m!e = \frac{k}{m} \times m! = k(m-1)!e \mathbb{Z}.$ Thus $m!e$ is an integer. So $\lfloor m!e \rfloor = m!e$, $m!e - \lfloor m!e \rfloor = 0$, $\therefore a_m = 0$ [apply result of (aiii)] and obtain a contradiction]

8.	(b)	Given that a sequence y_1, y_2, y_3, \dots is defined by	
		$y_1 = 2, \ y_{n+1} = \frac{y_n}{2} + \frac{1}{y_n}$, for all $n \in \mathbb{N}$.	
		Show that the sequence converges. Find the exact limit of the sequence.	[5]
		Solution	
		$y_1 = 2, \ y_{n+1} = \frac{y_n}{2} + \frac{1}{y_n}$	
		$y_{n+1}^{2} = \left(\frac{y_n}{2} + \frac{1}{y_n}\right)^2$	
		$= \frac{y_n^2}{4} + \frac{1}{y_n^2} + 1$	
		$= \left(\frac{y_n}{2} - \frac{1}{y_n}\right)^2 + 2$	
		$y_{n+1}^2 \ge 2$	
		Since $y_{n+1} > 0$ for $n \in \mathbb{N}$, $y_{n+1} \ge \sqrt{2}$. (show sequence is bounded below)	
		∴ The sequence y_1 , y_2 , y_3 , is bounded below by $\sqrt{2}$.	
		$y_{n+1} - y_n = \frac{1}{y_n} - \frac{y_n}{2} = \frac{2 - y_n^2}{2y_n} \le 0$ (as $y_n^2 \ge 2$ and $y_n > 0$). (show sequence is decreasing)	
		\therefore The sequence y_1, y_2, y_3, \dots is a decreasing sequence.	
		By Monotone Convergence Theorem, the sequence y_1, y_2, y_3, \dots converges.	
		Let $L = \lim y_n$. Then	
		$n \rightarrow \infty$	
		$\lim_{n \to \infty} y_{n+1} = L \text{ and } \lim_{n \to \infty} \left(\frac{y_n}{2} + \frac{1}{y_n} \right) = \frac{L}{2} + \frac{1}{L}$	
		$L = \frac{L}{2} + \frac{1}{L}$	
		$\frac{L}{2} - \frac{1}{L} = 0$	
		$L^2 - 2 = 0$	
		$L = \pm \sqrt{2}$ (reject $L = -\sqrt{2}$ as $L \ge 0$, : the sequence y_1, y_2, y_3, \dots is positive.)	
		The limit is $\sqrt{2}$.	