

RIVER VALLEY HIGH SCHOOL JC 2 PRELIMINARY EXAMINATION

CANDIDATE NAME	Sug	gest	ed Ar	nswer	
CLASS	2	0	J		INDEX NUMBER

H1 CHEMISTRY

Paper 2 Structured Questions

Additional Materials:

Data Booklet

READ THESE INSTRUCTIONS FIRST.

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO.

Write your name, class and index number in the spaces at the top of this page. Write in dark blue or black pen. You may use an pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section **A** Answer **all** questions in the space provided.

Section **B** Answer **one** question in the space provided.

A Data Booklet is provided. Do NOT write anything on it.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use					
Paper 1	30				
Paper	2				
1	9				
2	7				
3	6				
4	5				
5	18				
6	15				
7	20				
8	20				
s.f.					
units					
Paper 2	80				
Total	110				

8873/02

15 Sep 2021

2 hours

This paper consists of **20** printed pages.

Section A (60 marks)

Answer all the questions in this section.

1	(a)	(i)	Describe the reactions, if any, of the chlorides $MgCl_2$ and PCl_5 with water. Write equations for all reactions that occur, and suggest the pH of the resulting solutions. Relate the reactivity of these chlorides to their structure and bonding.	
				[3]
			MgCl ₂ has a <u>giant ionic lattice structure</u> and <u>strong electrostatic</u> <u>attraction between Mg²⁺ and Cl⁻ ions</u> . MgCl ₂ dissolves in water readily to form an acidic solution of <u>pH 6.5</u> . Both hydration of ions and partial hydrolysis of Mg ²⁺ (aq) occurs. Hydrolysis occurs due to the polarisation of water molecules by the Mg ²⁺ ion MgCl ₂ (s) + 6H ₂ O(l) → [Mg(H ₂ O) ₆] ²⁺ (aq) + 2C/ ⁻ (aq) [Mg(H ₂ O) ₆] ²⁺ (aq) + H ₂ O(l) ≪ [Mg(H ₂ O) ₅ OH] ²⁺ (aq) + H ₃ O ⁺ (aq) PCl ₅ has a <u>simple covalent structure</u> . PCl ₅ dissolves and undergoes hydrolysis in water to form an acidic solution of <u>pH 2</u> . P atom in PCl ₅ has <u>energetically accessible vacant 3d orbitals to form dative bonds</u> with water molecules.	
			$\frac{PCl_5(s) + 4H_2O(I) \rightarrow H_3PO_4(aq) + 5HCl(aq)}{H_5(aq)}$	
		(ii)	Carbon is in the same group as silicon. Suggest and explain if CCl_4 will react with water.	

			[1]
 			r.1
		CC14 <u>does not react with water</u> as carbon <u>does not have energetically</u> accessible empty 3d orbitals to accept the <u>lone pair of electrons</u> from water molecules.	
(b)	Phos isotop	phorus exist as ³¹ P, ³² P and ³³ P isotopes. ³¹ P is the most stable bes.	
	(i)	Define the term <i>isotopes</i> .	
			[1]
		Isotopes are atoms of the same element with the same number of protons but different number of neutrons.	
	(ii)	³¹ P can react with chlorine to form phosphorus chloride. Phosphorus in phosphorus chloride can exhibit variable oxidation states. Based on your knowledge in periodicity, state the two common oxidation states of phosphorus in phosphorus chloride	
			[1]
		<mark>+5, +3</mark>	
	(iii)	Phosphorus can exist as cations or anions.	
		The angle of deflection for a beam of ${}^{31}P^+$ ions in an electric field is 6°. Calculate the angle of deflection for a beam of ${}^{33}P^{3-}$ ions in the same electric field and show in the diagram below, Fig 1, how a beam of ${}^{33}P^{3-}$ ions will deflect in the electric field.	
		►	
		Beam of ³³ P ³⁻ ions +	
		Fig. 1	[2]

2	(a)	Propa	 State the difference between a weak acid and a strong acid. State the difference between a weak acid and a strong acid. A strong acid is one that jonises/dissociates completely in solution to give a large amount of H*. A weak acid is one that jonises/dissociates partially in solution to give a small amount of H*. Explain what is meant by the term <i>buffer solution</i>. A buffer solution is one that can resist a change in pH when a small amount of acid or base is added to it. The hydrogencarbonate ion, HCO3⁻, is part of the buffer in the blood. HCO3⁻ + H⁺ → H2CO3 After consuming food or drink containing sugar, the pH in the mouth can drop from pH 6.8 to a pH of approximately 4.8 as the sugar is broken down into lactic acid. In time, hydrogencarbonate ions in saliva restore the pH to its original value. Define pH and calculate the H+ ion concentration in the mouth at pH 4.8. 				
		(i)	State the difference between a weak acid and a strong acid.				
				[1]			
			A strong acid is one that <u>ionises/dissociates completely in solution</u> to give a large amount of H ⁺ .				
			give a small amount of H ⁺ .				
		(ii)	Explain what is meant by the term <i>buffer solution</i> .				
				[1]			
			A buffer solution is one that can resist a change in pH when a small amount of acid or base is added to it.				
		(iii)	The hydrogencarbonate ion, HCO_3 , is part of the buffer in the blood. Write an equation showing how HCO_3 reacts with acid in the blood.				
				[1]			
			$HCO_{3}^{-} + H^{+} \rightarrow H_{2}CO_{3}$				
		(iv)	After consuming food or drink containing sugar, the pH in the mouth can drop from pH 6.8 to a pH of approximately 4.8 as the sugar is broken down into lactic acid. In time, hydrogencarbonate ions in saliva restore the pH to its original value.				
			Define pH and calculate the H ⁺ ion concentration in the mouth at pH 4.8.				
			· · · · · · · · · · · · · · · · · · ·				
				[2]			

5

		pH is the negative logarithm to the base ten of the concentration of $H^+(aq)$ in mol dm ⁻³ . or	
		$p_1 = -ig_1 (aq)_1$	
		[H ⁺] = 10 ^{°4.8} = 1.58 × 10 ^{°5} mol dm ^{°3}	
(b)	(i)	Write an equation for the reaction between propanoic acid and sodium hydroxide. Label the conjugate acid and the conjugate base in your equation.	
			[2]
		CH₃CH₂COOH + NaOH → CH₃CH₂COO`Na⁺ + H₂O	
		Conjugate base Conjugate acid	
		[Tot	al: 7]

3	When 40 cm ³ of a gaseous organic compound, C_xH_yO , underwent complete combustion with an excess of oxygen, the total volume reduced by 130 cm ³ . A further contraction of 200 cm ³ took place when the residual gas was passed through aqueous sodium hydroxide. All volumes were measured at 25 °C and 1 atm.									
	(a)	Write	Write a balanced equation for the complete combustion of C _x H _y O.							
				[1]						
		C _x H _y ($C_xH_yO(g) + (x + \frac{y}{4} - \frac{1}{2})O_2(g) \rightarrow xCO_2(g) + \frac{y}{2}H_2O(I)$							
	(b)	State	State the function of NaOH(aq).							
				[1]						
		<mark>To re</mark>	act with CO ₂ (g).							
	(c)	(i)	State the volume of CO ₂ produced in this reaction							
				[1]						
			200 cm ³							

	(ii)	Hence, determine the values of x and y .	
			[3]
		x = 200 ÷ 40 = 5	
		[Tot	tal: 6]

4 Magnesium oxide is available for purchase without a prescription. It is added to dietary supplements as well as over-the-counter medications used to treat constipation, indigestion, and headaches.

of Mg ₃ N ₂ will be larger than that of MgO.	an Je JY
The charge and size is the same for cation. The <u>charge on N³⁻ is larger</u> that that of O ²⁻ while the <u>size of N³⁻ is larger than O²⁻.</u> The <u>effect of the charge</u> is larger than the effect of the size. Thus the magnitude of the lattice energy is larger than the effect of the size.	
$\frac{ \text{Lattice energy} \propto \frac{q^+ q^-}{r^+ + r^-}}{ r^+ + r^- }$	

5	efficient when manufacturing chemicals on a large scale. One such process is the Haber process for the production of ammonia. The enthalpy change of the reaction is `46 kJ per mole of ammonia.						
	(a)	(i)	Write an equation to show the chemical reaction that happens in the Haber process.				
	$N_2 + 3H_2 \ll 2NH_3$						
	(ii) Define the term <i>heterogeneous catalyst</i> .						
				[1]			
			A heterogeneous catalyst is a substance which is in a <u>different phase</u> from the reactants. It <u>increases the rate of a chemical reaction by</u> providing an alternative pathway of lower activation energy without itself being changed by the reaction.				
		(iii)	Name the catalyst used in the Haber process.				
				[1]			

		<mark>lro</mark>	n.								
	(iv)	Sta	ate the conditions u	used in	the Hab	er proc	ess.				
											[1]
		Hig	gh temperature of 4	450 °C a	and higl	<mark>n pressi</mark>	ure of 2	00 atm.			
	(v)	De pro	escribe and explain what would happen to the yield of the desired roduct if						d		
		I	the temperature i	s increa	ased,						
			When temperature is increased, <u>equilibrium position shifts to the</u> <u>left</u> , favouring the <u>backward endothermic reaction</u> to <u>remove</u> <u>some of the excess heat</u> . The <u>yield of ammonia decreases</u> .							<mark>e</mark> e	
		II	more hydrogen is	added	to the r	eaction	vessel.				
											[2]
			When more hydro	ogon is	addod	the equ	ilibrium	position	a chifte t	<u> </u>	[4]
			the right to consu of ammonia to inc	ume of crease.	the add	ed hydi	<u>rogen, c</u>	causing	the <u>yiel</u>	<u>d</u>	
(b)	Amm platin follow	Immonia is oxidised by air to nitric acid in the presence of a latinum/rhodium catalyst. There are several stages to the reaction. The ollowing equation is a summary of the overall process. $NH_3(g) + 2O_2(g) \rightarrow HNO_3(l) + H_2O(l) \qquad \Delta H = `409 \text{ kJ mol}`^1$									
	The rashow	ate o n in	of reaction was me the table below:	asured	at diffe	rent time	es and t	the resu	ılts are		
	[NH		mol dm` ³	2.20	2.00	1.80	1.50	1.25	0.80		
	Ra	te / ′	10 ^{`4} mol dm ^{`3} s ^{`1}	22.7	21.1	18.9	15.7	13.1	8.3		
	(i)	Plo	ot a graph of rate a	gainst [NH₃] in	the spa	ce belo	w.			

[3] Rate / 10⁻⁴ mol dm⁻³ s⁻¹ 25 20 15 10 5 0 1.0 2.0 3.0 [NH₃] / mol dm⁻³ (ii) Use your graph to find the order of the reaction with respect to NH_3 [1]

		Since the graph is a straight line, rate is directly proportional to [NH ₃] and order of reaction wrt NH ₃ is <u>1</u> .	
	(iii)	The order of reaction with respect to oxygen is zero. Write an expression for the rate equation.	
			[1]
		Rate = k[NH ₃]	
	(iv)	Calculate the rate constant, giving its units.	
			[2]
		Using a point on the graph,	
		$10 \times 10^4 = k(0.95)$	
		k = 1.05 × 10 ³ s ¹	
	(v)	Sketch the shape of the graph of [NH ₃] against time.	
			[2]

[Turn over

6 Super-absorbent polymers commonly known as hydrogel have the ability to absorb 200-300 times their own mass of water. Hydrogel is used in baby diapers and exists as small crystals of hydrogel at the core of the diaper. It absorbs the urine and swells up. Hydrogel has high water retention, enabling the baby to stay dry. A diaper is known to be effective if the swelling capacity is greater than 6000%. The swelling capacity is calculated by the following formula. swelling capacity = $\frac{m_2 - m_1}{m_4} \times 100\%$ m₁ : mass in grams, of hydrogel before swelling m₂ : mass, in grams, of hydrogel after swelling m₂: mass, in grams, of hydrogel after swelling In a particular brand of diaper, Momocool, 3.97g of dried hydrogel is found in a piece of baby diaper. Typically, a baby passes 55.0 cm³ of urine each time and a piece of diaper can hold 220.0 cm³ of urine. The hydrogel used in baby diapers is known as sodium polyacrylate. These polymers are commonly made by the polymerisation of monomer A mixed with sodium hydroxide in the presence of an initiator. OH Monomer A

(a)	(i)	Given that the density of a baby's urine is 1.003 g cm^{-3} , calculate the swelling capacity of the diaper.	
			[2]
		$1.003 = \frac{m}{220} \times 100\% = 220.66 \text{ g}$	
		swelling capacity = $\frac{220.66}{3.97} \times 100\% = 5558\%$	
		<mark>≈ 5560%</mark>	
	(ii)	Based on the calculation in (i) , state if Momocool is a good brand of diapers. Explain your answer.	
			[1]
		It is not a good brand to purchase as the swelling capacity is only 5550% which is less than 6000%	
(b)	(i)	Give the IUPAC name of monomer A .	
			[1]
		propenoic acid	
	(ii)	State the type of polymerisation involved in the formation of hydrogels.	
			[1]
		addition polymerisation	
	(iii)	Draw the structure of two repeat units of the polymer formed by the above method from monomer A when mixed with NaOH.	
			[1]

((i)	Name the functional groups in monomer A and B .	
			[3]
		alkene, carboxylic acid and amide	
((ii)	Identify the other product that is formed when monomer A is converted to monomer B .	
			[1]
		H ₂ O	
	(iii)	State the reagents and conditions necessary to reform monomer A from monomer B .	
			[1]
		H ₂ SO ₄ , heat under reflux (for prolonged period of time)	
	(iii)	State the reagents and conditions need to convert monomer A to propanoic acid.	
			[1]
		H ₂ , Ni catalyst, heat	
		[Total:	15]

8873/02

Section B (20 marks)

Answer **one** question from this section in the spaces provided.

8873/02

	Na, Mg and A <i>l</i> have giant metallic structures. Number of delocalised valence electrons increases from Na to A <i>l</i> . Hence, electrical conductivities are high							
	Si has a giant covalent structure. Electrical conductivity drops sharply at Si.							
	P_4 to C_{l_2} have simple covalent structures. Electrical conductivities drop to zero at P_4 to C_{l_2} because there are no mobile charge carriers to conduct electricity.							
(b)	Ferromanganese is an alloy added to steels to improve their mechanical properties. A 15g sample of ferromanganese was dissolved in 250cm ³ of dilute sulfuric acid to give an solution containing iron(II) sulfate and manganese(II) sulfate. 25.0 cm ³ of the resulting solution required 20.0 cm ³ of 0.0360 mol dm ⁻³ potassium manganate(VII) for complete reaction.							
	(i) By using the <i>Data Booklet</i> , write the oxidation and reduction half-equations for the reaction between the resulting solution and potassium manganate(VII).							
			[1]					
	Reduction : $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$							
	(ii) Hence or otherwise, construct an equation for the reaction.							
		$5Fe^{2+}$ + MnO ₄ ⁻ + 8H ⁺ → 5Fe ³⁺ + Mn ²⁺ + 4H ₂ O						
	(iii)	Calculate the percentage by mass of iron in ferromanganese.						
			[3]					
amt of MnO ₄ ⁻ = $\frac{20.0}{1000}$ × 0.036 = 7.20 × 10 ⁻⁴ mol								
	amt of Fe ²⁺ in 25 cm ³ = $7.20 \times 10-4 \times 5 = 3.60 \times 10^{-3}$ mol							

19

		250					
		amt of Fe ²⁺ in 250 cm ³ = $3.60 \times 10^{-3} \times \frac{200}{25} = 3.60 \times 10^{-2} \text{ mol}$					
	mass of Fe in sample = $3.60 \times 10^{-2} \times 55.8 = 2.009 \text{ g}$						
		% of Fe in sample = $\frac{2.009}{15} \times 100\% = 13.4\%$					
(c)	Propa	nol can be converted from propene or propanone as shown below.					
	CH₃CH	$H=CH_2 \xrightarrow{\text{step I}} CH_3CHBrCH_3 \xrightarrow{\text{step II}} CH_3CH(OH)CH_3 \xrightarrow{\text{step III}} CH_3COCH_3$					
	(i)	With the aid of a diagram, describe the bonding in C ^C bond in propene.					
			[3]				
		p orbitals					
		σ bond π bond					
		another <u>2p orbital overalp side-on to form π bond.</u>					
		The π electron cloud lies above and below the plane of the atoms.					

20

(ii)	State the types of reaction for step I and step III.	
		[2]
	step I : addition	
	step III : reduction	
(iii)	State the reagents and conditions needed for step III	
		[1]
	step III : NaBH ₄ / LiA <i>1</i> H ₄ in dry ether/ H ₂ , heat	
(iv)	State and explain how the rate of reaction for step II changes when 2-bromopropane is replaced by 2-iodopropane.	
		[2]
	<u>C-I covalent bond is weaker than C-Br. Less energy</u> is required to	
	increase when 2-bromopropane is substituted with 2-iodopropane.	
(v)	A student was given an unlabelled bottle and was told that it contains either a pure sample of propanone or a pure sample of propanol. Describe a chemical test, with appropriate observations, which would confirm the identity of the compound in the bottle.	
		[2]
	Reagent and condition : acidified KMnO ₄ / K ₂ Cr ₂ O ₇ , heat	
	Observation: if purple KMnO ₄ remains purple, the bottle contains propanone. If purple KMnO ₄ decolourise, the bottle contains propanol.	
	[Total:	20]

35 Temperature /°C 30 22.0 cm3 25 0 10 20 30 40 50 Volume of aqueous sodium hydroxide / cm³ (i) By drawing two separate straight lines of best fit, determine the maximum temperature rise, ΔT_{max} , of the titration. Show your working. [2] From the graph, T_{max} = 33.0 °C ∆T_{max} = 33.0 ` 29.0 = 4.0 °C (ii) Describe and explain the significance of: I. the straight line of best fit before the maximum temperature II. the straight line of best fit after the maximum temperature as more aqueous NaOH added. [4]

	 I. The first straight line has a <u>positive gradient</u> and takes into account the <u>increasing temperatures</u> as sodium hydroxide is being added to neutralise the concentrated sulfuric acid in the reaction mixture. As <u>enthalpy change of neutralisation is also exothermic</u>, <u>heat released</u> by the reaction causes an increase in temperature measured. II. The second straight line has a <u>negative gradient</u> as the reaction is complete. As <u>excess sodium hydroxide is being added</u> to the reaction mixture, the <u>heat is redistributed over an increasing volume of solution</u> in the polystyrene cup, leading to a <u>decrease in temperature</u>. 	
(iii)	By showing evidence on the graph, determine the volume of sodium hydroxide, V_{NaOH} , required for neutralisation.	
		[1]
	$V_{\text{NaOH}} = 22.0 \text{ cm}^3$	
(iv)	Calculate the amount of NaOH required for complete neutralisation.	
		[1]
	Amount of NaOH = 0.022 × 1.50 = 0.0330 mol	
(v)	Calculate the amount of NaOH that react with H ₂ SO ₄ .	
		[1]
	Amount of NaOH that react with $H_2SO_4 = 2(0.006) = 0.0120$ mol	
(vi)	Construct a balanced equation for the reaction of propanoic acid with NaOH.	
		[1]
	$CH_3CH_2COOH + NaOH \rightarrow CH_3CH_2COONa + H_2O$	

River Va	lley High	School 8873/02 [Turn (over
			[1]
	(11)		
	(;;)	= 0.0210 mol	
		Amount of propanoic acid at equilibrium =(1.50)(0.022) ` 0.0120	
			[1]
(b)	(i)	Using your answers from a(iv) and a(v) , calculate the amount of propanoic acid present at equilibrium.	
		<mark>∆H_{neut} = `1.87 / [(1.50)(0.022)] = `56.7 kJ mol^{`1}</mark>	
		$H^+ + OH^{\sim} \rightarrow H_2O$	
			[2]
	(vii)	Calculate the enthalpy change of neutralisation, in kJ mol ¹ .	
		Heat evolved = (90 + 22.0)(1.00)(4.18)(4.0) = 1.87 kJ	[1]
			F41
		energy, in kJ, evolved during the reaction.	
	(vi)	Assuming that the specific heat capacity of the reaction mixture is $4.18 \text{ Jg}^{1} \text{ K}^{1}$ and density of the solution is 1.00 g cm^{3} , calculate the	

		.							
			Dynamic equilibrium refers to a <u>reversible process at equilibrium</u> in which the rate of forward reaction is equal to the rate of backward reaction where [product] and [reactant] remain constant.						
		(iii)	Use the inforn table below.	nation given	and the answer fr	om b(i) , complete the		[2]	
_									
				C₂H₅OH	CH ₃ CH ₂ COOH	$CH_3CH_2COOC_2H_5$	H	2 O	
	Ini	tial an	nount / mol						
	Equili	ibrium	amount / mol						
]	
				C₂H₅OH	CH ₃ CH ₂ COOH	CH ₃ CH ₂ COOC ₂ H ₅	H	l2O	
	Ini	tial am	nount / mol	0.161	0.0300	0	0.1	150	
	Equili	ibrium	amount / mol	0.152	0.021	9 × 10 ^{`3}	0.159		
		(iv)	Write an expre	ession for th	e equilibrium cons	tant, K _c .			
			$K_{c} = \frac{1}{[CH_{3}CH_{2}COOC_{2}H_{5}][H_{2}O]}$						
		(iv)	Calculate the numerical value of K_c .						

