Broadrick Secondary School

4E5N Preliminary Examination 2024

Paper 2 Marking Scheme

1a	4.2×10^{6}	B1
b	$4.2 \times 10^6 - 3.6 \times 10^6$	M1
	$\frac{4.2 \times 10^6 - 3.6 \times 10^6}{3.6 \times 10^6} \times 100\%$	
	$= \frac{16\frac{2}{3}\%}{3}$	A1
С	$\frac{3.6 \times 10^6}{100 - 4} \times 100\%$	M1
	= 3750000	A1
2a	$= 3.75 \times 10^{6}$ $12x - 8x^{2} = 6 - 8x^{2}$	M1
20		
	12x = 6	
	$x = \frac{1}{2}$ $1 - 3p \ge 5$	A1
b	$\frac{1}{1-3p} \ge 5$	
	$-3p \ge 4$	
	$p \leq -\frac{4}{2}$	B1
С	$-3p \ge 4$ $p \le -\frac{4}{3}$ $3A = \frac{Ap+h}{1-h}$	
	3A(1-h) = Ap + h	M1 (make
	3A - 3Ah = Ap + h	linear)
	3A - 3Ah - Ap = h	
	A(3-3h-p) = h	M1 (Factorise)
	$A = \frac{h}{3 - 3h - p}$	A1
d		
		M1 (combine)
		M1 (combine)
		M1 (expand)

	$\frac{x}{(x-4)^2} - \frac{3}{4-x} = 2$ $\frac{x}{(x-4)^2} + \frac{3}{x-4} = 2$ $\frac{x+3(x-4)}{(x-4)^2} = 2$ $x+3x-12 = 2(x^2 - 8x + 16)$	M1 (quadratic formula using their found eqn)
	$4x - 12 = 2x^{2} - 16x + 32$ $0 = 2x^{2} - 20x + 44$ $0 = x^{2} - 10x + 22$	A1
	$x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(22)}}{2(1)}$ $= \frac{10 \pm \sqrt{12}}{2}$ $= 6.73 \text{ or } 3.27 \text{ (2dp)}$	
За	3y + 5x - 6 = 0	
	$y = -\frac{5}{3}x + 2$	M1 (find m)
	$-1 = -\frac{5}{3}(-3) + c$	M1
	c = -6 $y = -\frac{5}{3}x - 6$	A1
b	$y = -\frac{5}{3}(0) - 6 = -6$ B(0,-6)	
	Mid point of BD = $(0, \frac{9+-6}{2}) = (0, 1.5)$	M1 (find y value of C)
	C is (x, 1.5) and sub into $y = 7.5 - x$ 1.5 = 7.5 - x	
	x = 6	
	So C is (6, 1.5)	A1
С	So C is (6, 1.5) Area = $\frac{1}{2}(15)(3) + \frac{1}{2}(15)(6)$	M1 A1 <mark>(ECF from</mark>

	=67.5	<mark>(b))</mark>
d	Let <i>P</i> be (0,-1).	
	$\tan \angle ABP = \frac{3}{2}$	M1
	5	
	$\tan \angle ABP = \frac{3}{5}$ $\angle ABP = \tan^{-1}\left(\frac{3}{5}\right)$	
	Let Q be (0,1.5).	
	$\tan \angle CBQ = \frac{6}{7.5}$	M1
	$\frac{1}{7.5}$	
	$\angle CBQ = \tan^{-1}\left(\frac{6}{7.5}\right)$	
	$\angle CBQ = \tan^{-1}\left(\frac{6}{7.5}\right)$ $\angle ABC = \tan^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{6}{7.5}\right)$	
	= 69.6°	A1
	Or find length of AB, BC and AC and use cosine rule.	
4a	20	B1
bi	$X = pn^2 + qn$	
	When $n = 4$ and $X=2$,	
	$2 = p(4)^2 + q(4)$	
	2 = 16p + 4q	A1
	When $n = 5$ and $X = 5$,	
	$5 = p(5)^2 + q(5)$	
	5 = 25p + 5q	A1
bii	16p + 4q = 2	
	80p + 20q = 10(1)	
	25p + 5q = 5	
	100p + 20q = 20(2)	
	(2)-(1)	M1
	20p = 10	
	p = 0.5	A1
	q = -1.5	A1
biii		M1

	$495 = 0.5n^2 - 1.5n$	
	$0 = -495 - 1.5n + 0.5n^2$	M1
	$0 = n^2 - 3n - 990$	
	(n-33)(n+30) = 0	
	n = 33 or $n = -30$ (rej)	A1
	Since number of vertices is an integer, it is possible to have a <i>n</i> -sided polygon with 495 diagonals.	
5ai	$\angle ABC = \frac{100}{2} = 50^{\circ}$ (angle at centre = 2x angle at circumference)	B1
aii	$(ADC = 180^{\circ} - 50^{\circ} = 130^{\circ}$ (angles in one seq)	B1
aiii	$\angle ACO = \frac{180^{\circ} - 100^{\circ}}{2} = 40^{\circ}$ (base angles of isos triangle) (COT = 40° (oftension AC(OT))	M1
	2001 - 40 (all angles, AC//01)	M1
	$\angle OCT = 90^{\circ}$ (tan perpendicular to rad) $\angle OTC = 180^{\circ} - 90^{\circ} - 40^{\circ} = 50^{\circ}$ (angle sum of triangle)	A1
b	$\angle ADC = 180 - 90 - 40 = 30$ (angle sum of triangle) $\angle ADC + \angle AOC = 130^{\circ} + 100^{\circ}$	
D	$= 230^{\circ}$	B1
	≠ 180°	
	They are not angles in opposite segment.	
	A circle cannot be drawn passing through the points A,	
	O, C and D.	
С	$\tan 50^\circ = \frac{OC}{4.8}$	
	4.8	M1
	OC = 5.72042	
	Minor segment = minor sector – triangle	
	$= \frac{100}{360} \times \pi (5.72042)^2 - \frac{1}{2} (5.72042)^2 \sin(100^\circ)$	M1
		A1
6a	=12.4 cm ² -3.33 (2dp)	B1
6b	All points plotted correctly	P2
	Smooth curve	C1
6ci	Tangent drawn such that it passes through (-1,2) and touches curve at 1 point and gradient is negative.	C1
6cii	$m = \frac{2 - (-1)}{-1 - 0} = -3$	M1
	c = -1	
	y = -3x - 1	A1
6d		

	$\frac{1}{x-1} - \frac{1}{4}x = 0$ $\frac{1}{x-1} - \frac{1}{4}x + \frac{5}{4}x - 1 = \frac{5}{4}x - 1$	M1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1
	Draw line on graph	A1
	x = <u>2.6</u> and <u>-1.5</u> (accept 2.5, 2.55) (accept -1.4, -1.45, -1.55, -1.6)	
7ai	Median = 353 g	B1
aii	UQ: 366 or 367 LQ: 342 or 343 IQR = 366-342 = 24g (also accept 23 or 25 g depending on their UQ & LQ)	M1 A1
b	20%>32 apples	M1
C	Read at 128 th apple Min mass = 370 g	A1 M1
	$\frac{14}{160} \times \frac{160 - 104}{159} \times 2$ = 0.0616	A1
d	False. The first quartile which represents 25% of the apples are less than 320g. The upper quartile which represents 75% of the apples are less than 360g which implies that 25% of the apples are more than 360g Hence there are equal number of apples weighing less	B1 (states that the whiskers rep 25% of the data)
	than 320g and more than 360g.	
е	I disagree.	
	The median mass of apples from tree A is the same as that from tree B. On average, apples from tree A and B weigh the same.	B1
	IQR (Tree B) = 360 – 320 = 40g However, the interquartile range of the masses of the apples from tree B is bigger than that from tree A. The masses of the apples from tree B have a bigger spread, thus are less consistent.	B1

8a	$BE = \sqrt{15^2 + 8^2}$	M1
	$BL = \sqrt{15 + 8}$ = 17 cm	A1
b	$AG = \sqrt{17^2 + 10^2} = \sqrt{389}$	M1
	$AG = \sqrt{17 + 10} = \sqrt{389}$ = 19.7 cm (3sf)	A1
С	Let <i>M</i> be the midpoint of <i>CG</i> and <i>N</i> be the midpoint of	
	BF.	M1
	$JM = \sqrt{8^2 - 4^2} = \sqrt{48}$	M1
	Then $JN = 10 + \sqrt{48}$	
		M1
	$AN = \sqrt{15^2 + 4^2} = \sqrt{241}$	
		A 1
	$AJ^2 = (\sqrt{241})^2 + (10 + \sqrt{48})^2$	A1
	AJ = 22.96876	
d	= 22.97 (4sf) (shown)	
u	$\cos \angle JAG = \frac{22.97^2 + \left(\sqrt{389}\right)^2 - 8^2}{2 \times 22.97 \times \sqrt{389}}$	M1
	$\cos 2JAG = \frac{1}{2 \times 22.97 \times \sqrt{389}}$	
	$\angle JAG = 19.7796 = 19.8^{\circ} (1dp)$	A1
9a	If use exact value, angle =19.78165 = 19.8° (1dp)	M1
94	Capacity = $\frac{1}{3}\pi(2)^2(3) + \frac{2}{3}\pi(3)^3$	A1
	$=69.1150 = 69.1 \text{ m}^3$	
b	Curved hemisphere = $2\pi(3)^2 = 18\pi$	M1
	Ring = $\pi(3)^2 - \pi(2)^2 = 5\pi$	(Hemisphere
		or ring)
	Slant height of cone, L = $\sqrt{2^2 + 3^2} = \sqrt{13}$	M1 (CSA of
	Curved area of big cone = $\pi(2)\sqrt{13} = 2\pi\sqrt{13}$	big cone using
		their L)
	Using similar solids,	
	$\frac{h_{\text{small cone}}}{h_{\text{sin array}}} = \sqrt[3]{\frac{1}{10}}$	
	$h_{\rm big\ cone}$ V10	M1 (find ratio
	$\frac{A_{\text{small cone}}}{A_{\text{big cone}}} = \left(\sqrt[3]{\frac{1}{10}}\right)^2 = \frac{1}{\sqrt[3]{100}}$	of h and then area)
	$\frac{A_{\text{contact with water}}}{A_{\text{big cone}}} = \frac{\sqrt[3]{100} - 1}{\sqrt[3]{100}}$	
	$A_{\text{contact with water}} = \frac{\sqrt[3]{100} - 1}{\sqrt[3]{100}} \times 2\pi\sqrt{13} = 17.7736$	M1 (find area
I I	contact with watch 3/100	
	Total area in contact = $18\pi + 5\pi + 17.7736$	of cone in contact)

	= 90.0302	2 = 90.	0 m ²				
							A1
10a	$\frac{300}{1200} \times 100\% = 25\%$				B1		
b	$6+1.8\times23$	×49 = §	5182.40				M1, A1
С							
	Item Printing of T-shirts Goodie Bags		DescriptionDouble side (Bundle of 500 pcs)No of packs req = 1000/5 = 200		Total cost \$7000 x 2= \$1400	00	M1 (T-shirt printing)
	Booking	of	Bulk price (100+ packs) 6 months in advance		\$18 x 200 = \$360 \$1200	00	M1 (bag)
	Refreshments		Large set Regular set Small set		\$3 x 1000 = \$300 or \$2.80 x 1000 \$2800 or \$2.50 x 1000 \$2500	=	M1 (medals)
	Participant medals	ts	s Number of pack = 1000/50 = 20		\$210 x 20 = \$420	00	
	Total weight of shirts = 140 g x 1000 = 140 kg						M1 (shipping)
	Local Courier		per of parcels		Cost		
	Simply Post		$\frac{40}{80} \approx 2$		1.85×2×79) +1.85×2×59)		
			cel of 80 kg + rcel of 60 kg	= 520.2	0		
	Singapor e Post		$\frac{40}{2} \approx 3$	2(6+1	$1.80 \times 2 \times 49$)		
			50 els of 50 kg +		$1.80 \times 2 \times 39$)		
		1 pa	rcel of 40 kg	= 511.			
	DPEX	-	$\frac{40}{20} \approx 5$		$1.60 \times 2 \times 29$		
		30 4 parcels of 30 kg + 1 parcel of 20 kg		+(5.5+)	-1.60×2×19) 50		
	Choose Singapore Post & Large Set of refreshment.					M1 (cost after	
	Total costs after GST = $(14000 + 3600 + 1200 + 3000 + 4200 + 511.20) \times \frac{109}{100}$				GST)		
					100		

=28897.208 At least 40% to charity, so 60% will be to cover costs: Including charity = $\frac{28897.208 \times \frac{100}{60} = 48162.01}{60}$	M1 (total including charity)
Fee for each participant= $\frac{48162.01}{1000}$ = \$48.16 To donate at least 60% of the proceeds and cover all costs, sensible amount to charge each participant = \$50.	A1