Solutions

runci	
1	$y = e^{x^{2}-2x} - 2$ $x^{2} - 2x = \ln(y+2)$ $(x-1)^{2} - 1 = \ln(y+2)$ $(x-1)^{2} = 1 + \ln(y+2)$ $x = 1 \pm \sqrt{1 + \ln(y+2)}$ Since $x < 0$, $x = 1 - \sqrt{1 + \ln(y+2)}$ $D_{f-1} = R_{f} = (-1, \infty)$ $\therefore f^{-1} : x \to 1 - \sqrt{1 + \ln(x+2)}, x > -1$
	$R_{g} \subseteq D_{f^{-1}} \Rightarrow R_{g} \subseteq (-1,\infty) \qquad \text{When } g(x) = -1$ $g(2) = \frac{2-3}{2-1} = -1$ $D_{g} = (2,\infty)$ $\int_{1}^{1} \frac{1}{1} \frac{1}{$
	$(2,\infty) \xrightarrow{g} (-1,1) \xrightarrow{f^{-1}} (1-\sqrt{1+\ln 3},0)$

3a
$$f(x) = x - 2\tan^{-1}(2x)$$

 $f'(x) = 1 - \frac{4}{1 + 4x^2}$
 $0 \le x^2 < \frac{3}{4}$
 $1 \le 1 + 4x^2 < 4$
 $\frac{1}{4} < \frac{1}{1 + 4x^2} \le 1$
 $1 < \frac{4}{1 + 4x^2} \le 4$
Since $1 < \frac{4}{1 + 4x^2} \le 4$, $\therefore 1 - \frac{4}{1 + 4x^2} < 0$, $f'(x) < 0$
So $f(x)$ decreases when x increases.

	$R_{\rm f} = \left(\frac{\sqrt{3}}{2} - \frac{2\pi}{3}, -\frac{\sqrt{3}}{2} + \frac{2\pi}{3}\right)$
	Or $R_{\rm f} = (-1.23, 1.23)$
	For ff to exist,
	$R_f \subseteq D_f$
	$R_f = \left(\frac{\sqrt{3}}{2} - \frac{2\pi}{3}, -\frac{\sqrt{3}}{2} + \frac{2\pi}{3}\right)$ or $R_f = (-1.23, 1.23)$
	$D_f = \left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right)$ or $R_g = (-0.866, 0.866)$
	$\therefore R_f \not\subset D_f$
	ff does not exist.
	Let $y = x - 2 \tan^{-1}(2x)$. Then $x = y - 2 \tan^{-1}(2y)$
b)	$h(x) = x^2 + 2$
	$gh(x) = x^{4} - 2x^{2} + 5 = (x^{2} - 1)^{2} + 4$
	$g(x+2) = \left[\left(x^2 + 2 \right) - 3 \right]^2 + 4$
	$g(x) = (x-3)^2 + 4$
	Alternatively,
	$h(x) = x^2 + 2$
	$gh(x) = x^4 - 2x^2 + 5$
	$= (x^{2} + 2)^{2} - 4x^{2} - 4 - 2x^{2} + 5$
	$= (x^{2}+2)^{2} - 6(x^{2}+2) + 13$
	$\Rightarrow g(x) = x^2 - 6x + 13$

4 (i)
$$D_f = (-\infty, \infty)$$
 and $R_g = (2, \infty)$
Since $R_g = (2, \infty) \subset D_f = (-\infty, \infty) \Rightarrow$ function fg exists.
 $fg(x) = f[g(x)] = (\sqrt{x+4})^2 - 1$
 $fg(x) = x+3, x \in \Re^+$
(ii)
Since $R_{fg} = (3, \infty) \subset D_g = (0, \infty) \Rightarrow$ function gfg exists
 $h(x) = gfg(x) = g[fg(x)] = \sqrt{(x+3)+4} = \sqrt{x+7}, x > 0$

(iii)
$$h(x) = g^{-1}g(x), \quad x > 0$$

 $g[fg(x)] = g^{-1}g(x)$
 $\sqrt{x+7} = x, \quad x \in \Re^{+}$
 $x + 7 = x^{2}$
 $x^{2} - x - 7 = 0$
 $x = \frac{1 \pm \sqrt{1 - 4(1)(-7)}}{2(1)} = \frac{1}{2}(1 \pm \sqrt{29})$
 $x = \frac{1}{2}(1 + \sqrt{29})$ since $x \in \Re^{+}$
5 (i) $g(x) = f(x-1)$
The transformation is a translation of +1 unit in the direction of the x-axis
Alternatively, $g(x) = 2^{x-1} = \frac{1}{2}(2^{x}) = \frac{1}{2}f(x)$
The transformation is a scaling parallel to the y-axis by factor $\frac{1}{2}$
(ii) A horizontal line $y = k$ ($k > -\frac{9}{4}$) cuts the graph
at 2 points, h is not one- one, so h⁻¹ does not exist
(iii) $a = -\frac{1}{2}$
Let $y = h(x) = x^{2} + x - 2, \quad x \in \mathbb{R}, x > -\frac{1}{2}$
 $y = \left(x + \frac{1}{2}\right)^{2} - \frac{9}{4}$
 $\left(x + \frac{1}{2}\right)^{2} = y + \frac{9}{4} = \frac{4y + 9}{4}$
 $x = -\frac{1}{2} \pm \frac{\sqrt{4y + 9}}{2}$ (since $x > -\frac{1}{2}$)

$$h^{-1}: x \mapsto \frac{-1 + \sqrt{4x + 9}}{2}, \quad x \in \mathbb{R}, x > -\frac{9}{4}$$

(iv) $R_{f} = (0, \infty)$
 $D_{h^{-1}} = (-\frac{9}{4}, \infty)$
 $\therefore R_{f} \subset D_{h^{-1}}.$
Hence $h^{-1}f$ exists.
 $h^{-1}f(x) = h^{-1}(2^{x})$
 $= \frac{-1 + \sqrt{4(2^{x}) + 9}}{2}$
 $h^{-1}f: x \mapsto \frac{-1 + \sqrt{4(2^{x}) + 9}}{2}, \quad x \in \mathbb{R}$
 $R_{h^{-1}f} = (1, \infty)$

6	Let $y = (x+1)^2 + 1$
	$\Rightarrow x = -1 \pm \sqrt{y - 1}$
	Since $x \leq -1$,
	$\therefore x = -1 - \sqrt{y - 1}$
	$\therefore g^{-1}(x) = -1 - \sqrt{x-1}, x \ge 1$
	$R_g = [1, \infty)$
	$\mathbf{D}_{\mathrm{f}}=\mathbb{R}$
	$ m R_{g} \subseteq m D_{f}$,
	∴fg exists
	$fg(x) = 3 - 2e^{(x+1)^2 + 2}; x \in \mathbb{R}, \ x \le -1$
	$\mathbf{R}_{\mathrm{fg}} = (-\infty, \ 3 - 2e^2]$

River Valley High School, Mathematics Department

7(a)	$fg(x) = gf(x) \Longrightarrow f(\ln(x +2)) = g(\ln(x+2))$
	$\Rightarrow \ln [\ln(x +2)+2] = \ln [\ln(x+2) +2]$
	$\Rightarrow \ln(x +2) = \ln(x+2) $
	$y = \ln(x+2) $ $y = \ln(x +2)$
	Consider $\ln(-x+2) = -\ln(x+2)$
	$\Rightarrow (-x+2) = \frac{1}{x+2}$
	$\Rightarrow (2+x)(2-x) = 1$
	$\Rightarrow 4-x^2=1$
	$\Rightarrow x^2 = 3$
	$\Rightarrow x = -\sqrt{3}$ (reject $x = \sqrt{3}$)
	Hence, for $fg(x) = gf(x)$, $x \ge 0$ or $x = -\sqrt{3}$
(b)(i)	$g(x) = \ln(x +2)$.
	Note that both $x = 1$ and $x = -1$ are in the domain of g.
	Clearly $-1 \neq 1$, But $g(-1) = g(1) = \ln 3$
	Therefore, function g is not 1-1 and inverse of function of g cannot be formed.
(ii)	largest $a = 0$.
(iii)	Let $y = g(x) = \ln(x + 2)$.
	Since $x \le 0$, $y = \ln(-x+2)$
	$\Rightarrow -x+2=e^y$
	$\Rightarrow x = 2 - e^y$
	\Rightarrow g ⁻¹ (y) = 2 - e ^y
	Hence $g^{-1}: x \to 2 - e^x$, $x \in [\ln 2, \infty)$

(i)

$$x = \sqrt{\frac{5-y^{2}}{a}}, \text{ since } 0 \le x \le \sqrt{\frac{5}{a}}$$

$$\therefore f^{-1}: x \mapsto \sqrt{\frac{5-x^{2}}{a}}, \quad 0 \le x \le \sqrt{5}$$
(i)

$$f^{2}(x) = x \quad \text{for all } x \in \mathbb{R}, \quad 0 \le x \le \sqrt{\frac{5}{a}}$$
Given: $f^{2}(x) = x$

$$\Rightarrow f(x) = f^{-1}(x)$$

$$\Rightarrow \sqrt{5-ax^{2}} = \sqrt{\frac{5}{a}} - \frac{x^{2}}{a}$$

$$\Rightarrow 5 = \frac{5}{a}, \quad a = \frac{1}{a}$$

$$\therefore a = 1 \text{ (shown)}$$
Since $R_{e} = (1, 2] \subset D_{f} = [0, \sqrt{5}], \therefore \text{ fg exists.}$
(ii)

$$\frac{\text{Method 1}}{\text{fg}(x) = \sqrt{5-(1+e^{-x})^{2}}, \quad x \ge 0$$

$$R_{ig} = [1, 2)$$

$$\frac{\text{Method 2}}{(0, x) \stackrel{g}{\Rightarrow} (1, 2] \stackrel{f}{\rightarrow} [1, 2)}$$

$$R_{ig} = [1, 2)$$
11
(i) $f(x) = 4 - x^{2} - 4\lambda x$

$$= -[(x + 2\lambda)^{2} - (2\lambda)^{2}] + 4$$

$$= -(x + 2\lambda)^{2} + 4\lambda^{2} + 4$$

$$(-2\lambda, 4\lambda^{2} + 4)$$

Since horizontal line y = 0 cuts the graph y = f(x) twice, f is not a one-one function. \therefore f does not have an inverse.

(ii) Largest value of $k = -2\lambda$ Let $y = -(x+2\lambda)^2 + 4\lambda^2 + 4$ $x = -2\lambda \pm \sqrt{4\lambda^2 + 4} - y$ Since $x < -2\lambda$, $x = -2\lambda - \sqrt{4\lambda^2 + 4} - y$ $\therefore f^{-1}: x \mapsto -2\lambda - \sqrt{4\lambda^2 + 4} - x$, $x < 4\lambda^2 + 4$ (iii) $R_{f^{-1}} = (-\infty, -2\lambda)$ $D_g = (-\infty, 1)$ Given $\lambda > -\frac{1}{2}$, $\therefore R_{f^{-1}} = (-\infty, -2\lambda) \subset (-\infty, 1) = D_g$ $\therefore gf^{-1}$ exists $\therefore R_{gf^{-1}} = (\ln(1+2\lambda), \infty)$

$gf(x) = g\left(\frac{1-2x}{x-2}\right)$
$=\ln\left(\frac{1-2x}{x-2}+3\right)$
$= \ln\left(\frac{1 - 2x + 3x - 6}{x - 2}\right) = \ln\left(\frac{x - 5}{x - 2}\right), x < 2$

13(a)(i)
$$R_t = (0, \infty) \subseteq D_g = (-2, \infty)$$

 \therefore gf exist.
gf : $x \mapsto (\sqrt{7-x}-2)^4 + 2(7-x), x \in \mathbb{R}, x < 7$
(ii) $D_t = (-\infty, 7) \xrightarrow{t} \mathbb{R}_t = (0, \infty) \xrightarrow{g} \mathbb{R}_{gf} = [3, \infty)$
 $\xrightarrow{y} \qquad y = f(x) = \sqrt{7-x}$
 $\xrightarrow{16} \qquad y = g(x) = (x-2)^4 + 2x^2$
 $\xrightarrow{y} \qquad (1,3) \qquad x$
Alternative
 $y \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(6,3)} \xrightarrow{y} \qquad y = gf(x) = (\sqrt{7-x}-2)^4 + 2(7-x)$
 $\xrightarrow{(7,3)} \xrightarrow{x} \qquad y = gf(x) = (x-2)^4 + 2(7-x)$
 $\xrightarrow{(7,3)} \xrightarrow{x} \qquad y = gf(x) = (x-2)^4 + 2(x-2)^4 + 2(x-2)^4$

$$\frac{\text{Alternative}}{\text{kh}(h^{-1}(x)) = \text{k}(x)} \\
\left(h^{-1}(x)\right)^{2} + a = x - 5 \\
h^{-1}(x) = \sqrt{x - 5 - a} \text{ or } -\sqrt{x - 5 - a} \\
\left(\text{rejected } \because R_{h^{-1}} = D_{h} = (\sqrt{5}, \infty)\right) \\
h^{-1}(x) = \sqrt{x - 5 - a} \\
h^{-1}(x) = \sqrt{x - 5 - a}, \quad x \in \mathbb{R}, \quad x > 10 + a$$

14(i)
$$k = -1$$

(ii) Let $y = 2 - (x+1)^2$
 $x+1 = \pm \sqrt{2-y}$
 $x = -1 + \sqrt{2-y}$ (NA) or $x = -1 - \sqrt{2-y}$ ($\because x \le -1$)
 $f^{-1} : x \mapsto -1 - \sqrt{2-x}$, $x \le 2$
(iii) $f(x) = f^{-1}(x)$
 $\Rightarrow f(x) = x$
 $\Rightarrow 2 - (x+1)^2 = x$
 $\Rightarrow x^2 + 3x - 1 = 0$
Using GC, $x = -3.303$ (since domain of f is $x \le -1$)

$$\frac{15}{x-1} = 2x-9 + \frac{16}{x-1}$$

River Valley High School, Mathematics Department

River Valley High School, Mathematics Department

A.	IC Prelim 9758/2018/01/Q9
17	(i) Since $f(-3) = f(2) = 0$ where $-3, 2 \in D_f$, f is not one-one.
	Thus f^{-1} does not exist.
	OR (i) Since the horizontal line
	y = 0, cuts the graph of $y = f(x)$ at more than 1 point
	y = 1(x) at more than 1 point, f is not sup to an there C^{-1} does not exist
	1 is not one to on, thus f does not exist.
	y y $\frac{25}{4}$ y = 0 -3 $-\frac{1}{2}$ (ii) Since $k \le x \le 2$ $f(x) = -(x-2)(x+3)$. Least $k = -\frac{1}{2}$
	(ii) Since $k \le x \le 2$, $I(x) = -(x-2)(x+3)$. Least $k = -\frac{1}{2}$.
	Let $y = f(x)$, where $-\frac{1}{2} \le x \le 2$.
	$y = -(x+3)(x-2) = -(x^{2}+x-6) = -\left(x+\frac{1}{2}\right)^{2} + \frac{25}{4}$
	$\left(x+\frac{1}{2}\right)^2 = \frac{25}{4} - y \Rightarrow x = -\frac{1}{2} \pm \sqrt{\frac{25-4y}{4}}$
	Since $-\frac{1}{2} \le x \le 2$, $x = -\frac{1}{2} + \frac{1}{2}\sqrt{25 - 4y}$
	:. f^{-1} : $x \mapsto -\frac{1}{2} + \frac{1}{2}\sqrt{25 - 4x}$, $x \in \mathbb{R}$, $0 \le x \le \frac{25}{4}$.
	Alternative Method
	Let $y = f(x)$, where $-\frac{1}{2} \le x \le 2$.
	$y = -(x+3)(x-2) = -x^2 - x + 6$
	$x^2 + x + y - 6 = 0$
	$x = \frac{-1 \pm \sqrt{1 - 4(y - 6)}}{2} = \frac{-1 \pm \sqrt{25 - 4y}}{2}$
	Since $-\frac{1}{2} \le x \le 2$, $x = \frac{-1 + \sqrt{25 - 4y}}{2}$
	$\therefore f^{-1}: x \mapsto \frac{-1 + \sqrt{25 - 4x}}{2}, x \in \mathbb{R}, \ 0 \le x \le \frac{25}{4}.$

$$g^{-1}(f(x)) < 1 \implies f(x) > g(1) \text{ (since g is a decreasing function)}$$

$$\implies f(x) > 5$$

$$\implies -x^2 - x + 6 > 5$$

$$\implies x^2 + x - 1 < 0$$

$$\implies \frac{-1 - \sqrt{5}}{2} < x < \frac{-1 + \sqrt{5}}{2}$$

Since $-\frac{1}{2} \le x \le 2$, $\therefore -\frac{1}{2} \le x < \frac{-1 + \sqrt{5}}{2}$

$$y = g\left(-\frac{x}{2}\right) = \frac{1}{1 + \left(\frac{x}{2} + 1\right)^2} \qquad -2 \le \frac{x}{2} \le 2$$

$$= \frac{4}{4 + \left(x + 2\right)^2} \qquad -4 \le x \le 4$$
C: Scaling parallel to the y -axis by a factor of 3
$$h(x) = 3g\left(-\frac{x}{2}\right) = \frac{12}{4 + \left(x + 2\right)^2} \qquad -4 \le x \le 4$$
1(iii) Range of f(x) is [-4,1]
Domain of h(x) is [-4,4]
Since $R_f \subset D_h$, hf(x) exists.
Range of hf(x) = $\left[\frac{12}{13}, 3\right]$

		$x = 1 + \frac{3}{1 - y}$
		$x = 1 - \frac{3}{3}$
		y-1
		Since $y = f(x)$, $x = f^{-1}(y)$.
		$\therefore f^{-1}(y) = 1 - \frac{3}{y - 1}$
		Hence $f^{-1}(x) = 1 - \frac{3}{x-1} = \frac{x-4}{x-1}, x \in \mathbb{R}, x \neq 1$
		Since the $D_{f^{-1}} = R_f = (-\infty, 1) \cup (1, \infty) = D_f$
		Since $f^{-1} = f$, $f^{2}(x) = ff^{-1}(x) = x$,, $f^{100}(x) = x$
		$f^{101}(101) = f(f^{100}(101))$
		= f(101)
		101-4 97
		$=\frac{1}{101-1}=\frac{1}{100}$
(iii)	$g: x \mapsto x^2 + 2x + 2, x \in \mathbb{R}, x > -1$
		$g(x) = (x+1)^2 + 1$
		From the graph of g,
		y
		0
		(-1, 1)
		Range of $g = (1, \infty)$
		Domain of $f = \mathbb{R} \setminus \{1\}$
		Since $(1,\infty) \subseteq \mathbb{R} \setminus \{1\}$
		i.e. Range of $g \subseteq$ Domain of f
		Therefore the composite function fg exists.
		To find range of composite function fg:

21. ASRJC/2022/I/Q8

(a) Functions f and g are defined by

$$f: x \mapsto x^2, \quad x < 0,$$

$$g: x \mapsto \frac{1}{x}, \quad x > 0.$$

(i) Explain why the composite function gf exists. [1]

- (ii) Find the exact value of $f^{-1}g^{-1}(3)$. Show your workings clearly. [3]
- (b) For real values *a*, the function h is defined by

$$h: x \mapsto ax - \frac{1}{x}, \quad x < 0.$$

- (i) If *l* is negative, explain clearly with a well-labelled diagram, why h⁻¹ does not exist.
- (ii) If a = 1, find h^{-1} in similar form. [3]

8	Solution	
	(ai) $R_f = (0, \infty)$ and $D_g = (0, \infty)$	
	Since $R_f \subseteq D_g$, the composite function gf exists.	
	(ii) Let $f^{-1}g^{-1}(3) = k$	
	$g^{-1}(3) = f(k) = k^2$	
	$g(k^2) = 3$	
	$\frac{1}{k^2} = 3$	
	$k = -\frac{\sqrt{3}}{3} \left(\because \mathbf{D}_{\mathrm{f}} = (-\infty, 0) \right)$	
	(bi)	
	$h(x) = ax - \frac{1}{x}$	
	$\mathbf{h'}(x) = a + \frac{1}{x^2}$	
	For $a + \frac{1}{x^2} = 0 \Longrightarrow x = \frac{-1}{\sqrt{-a}} = \frac{\sqrt{-a}}{a} (\because x < 0)$	

