Name:	Register/Index Number:	Class:
Naiii c	register/index runiber	Olass

PRESBYTERIAN HIGH SCHOOL

SCIENCE (CHEMISTRY) 5076/3, 5078/3

Paper 3

12 August 2022 Friday 1 hour 15 minutes

PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCH

2022 SECONDARY FOUR EXPRESS / FIVE NORMAL (ACADEMIC) PRELIMINARY EXAMINATION

INSTRUCTIONS TO CANDIDATES

DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO.

Write your class, register number and name on all the work you hand in. Write in dark blue or black pen.

Do not use correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer **any two** questions.

Write your answers in the spaces provided on the question paper.

A copy of the Periodic Table is printed on page 13.

Setter: Mr Muhammad Faeez Vetted by: Ms Chan Poh Hoon

For Examiner's Use			
Section A	45		
Section B	20		
Total	65		

Section A (45 marks)

Answer all questions in the spaces provided.

1 Use the list of elements below to answer the questions that follow.

copper	sodium	chlorine	aluminium	nitrogen
oxygen	iron	carbon	helium	bromine

In your answers, you may use an element once, more than once, or not at all.

Name **one** element which

(a)	is used in the manufacture of steel,	[1]
(b)	can displace tin from its compound,	[1]
(c)	has six valence electrons,	[1]
(d)	has a triple bond within its molecule,	[1]
(e)	is an inert gas.	[1]

Zinc smelting is a process that converts zinc concentrates (ores that contain zinc) into pure zinc. One of the last stages involves purifying zinc by fractional distillation in a column made up of silicon carbide. The main impurities in zinc are shown in Table 2.1. Pure zinc has a boiling point of 908 °C.

Table 2.1

impurities	boiling point /°C
cadmium	765
copper	2582
iron	2887
lead	1751

(a)	State why it is possible to purify zinc by fractional distillation.
` ,	[1]
(b)	When fractional distillation is carried out, which metal will be distilled first?
	[1]
(c)	How would you test if the zinc purified from the fractional distillation is free from any impurities?
	[1]

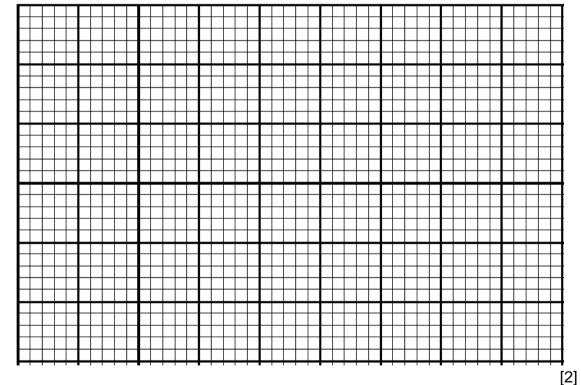

In an experiment, 0.100 g of zinc granules was reacted with excess of 1.00 mol/dm³ hydrochloric acid and the total volume of gas produced was measured every ten seconds until the reaction stopped. The results are shown in Table 3.1.

Table 3.1

time from the start of	total volume of gas
experiment/ s	produced/ cm ³
0	0
10	31
20	52
30	67
40	78
50	88
60	96
70	100
80	100

(a)	Construct a balanced equation for the reaction.
	[1]

(b) Plot a graph of total volume of gas produced against time.

(c)	(i)	How long did it take for the reaction to stop?
		[1]
	(ii)	Explain why the reaction stops.
		[1]

			4	
(d)		e experiment was er conditions bein		ame mass of powdered zinc, with the
	(i)		he collision theory, ho the speed of reaction	w changing from zinc granules to zinc
			• • • • • • • • • • • • • • • • • • • •	[2]
	(ii)			ph of how the volume of gas produced _abel this new graph A . [1]
Fig 4	4.1 s	shows a solution n	nixture V , which conta	ins two cations and one anion.
			mixture V	
		aqueous		_
		barium	aqueous	excess
		nitrate	ammonia	solution Y
		white precipitate W	blue precipi	green precipitate Z
			excess aqueous	
			ammonia 🗼	
			deep-blu	
			solution	
			Fig 4.1	
(a)	Sta	ate the identity of t		
	(i)	white precipitat	e W	[1]
	(ii)	blue precipitate	X	[1]
	(iii)	green precipitat	te Z	[1]
	(iv	solution Y		[1]
(b)	Su	ggest the ions pre		
				[1]
(a)	Co	mplete Table 5.1.	Table 5	5.1
		chomical name	chamical farmula	acidia/bacia/pautral/amabataria
	-	chemical name	chemical formula	acidic/basic/neutral/amphoteric

4

5

chemical name	chemical formula	acidic/basic/neutral/amphoteric
calcium oxide		
	PbO	
nitrogen monoxide		

(b) Small pieces of each of the following metals were added to cold water and the volume of gas collected in the first two minutes was recorded in Table 5.2.

Table 5.2

metal	aluminium	barium	calcium	magnesium	potassium
volume of gas/ cm ³	0	60	25	2	90

(i)	Use the data in Table 5.2 to place the metals in order of increasing reactivity.
(ii)	Write an equation, with state symbols, for the reaction between calcium and water.
(iii)	What would you expect to see if carbon dioxide is passed through the solution remaining from the reaction in (b)(ii) ? Give a reason for your answer.
(iv)	[2] Explain why aluminium did not produce any gas when added to cold water[1]

Table 6.1 below shows the mass of some pollutants found in the exhaust gas when one kilogram of each fuel is burnt.

Table 6.1

	mass of pollutant/ g										
fuel	carbon monoxide	oxides of nitrogen	sulfur dioxide								
petrol	27	30	0.8								
diesel	11	60	3.9								

(a)	(i)	Explain why carbon monoxide is found in the exhaust gas.
		[1]
	(ii)	Explain the effect of carbon monoxide on humans.
		[1]
(b)		ne the element found in both petrol and diesel that is responsible for the ence of carbon monoxide in the exhaust gas.
		[1]

)		ng the data in Table 6.1, name the fuel which is more harmful to the ronment when burnt. Explain your answer.
l)		following shows two molecules of alkenes.
'	1116	-
		CH_3 - CH_2 - CH_2 CH_3 - $C=CH_2$ CH_3
		reference to Fig 6.2, suggest one similarity and one difference between the molecules.
		[2
	Alke	nes can undergo polymerization to form polymers.
	(i)	Given part of the polymer shown in Fig 6.3, deduce the name of its monomer. Hence draw the structure of the monomer.
		H H H H H H H H H H H H H H H H H H H
		Fig 6.3
		Name of monomer:
		Structure:
		[2]
	(ii)	Describe one problem caused by polymers[1]
		[1]

7 Lavandulol is found in lavender plants. The formula of lavandulol is shown below in Fig 7.1.

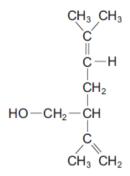


Fig 7.1

(a)	Lavandulol	can be	made sat	urated by	reacting it	with hydrogen
-----	------------	--------	----------	-----------	-------------	---------------

(i) State the conditions required for this reaction.

.....[1]

(ii) Draw the structure of the compound formed from this reaction.

[1]

(b) Lavender flowers contain a variety of different pigments (colourings). A student separated these pigments using paper chromatography with ethanol as the solvent. The results are shown in the Fig 7.2 below.

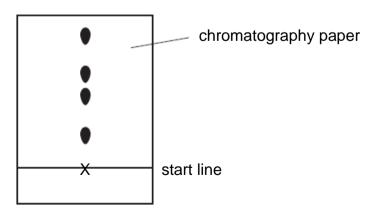


Fig 7.2

(i) How many pigments does lavandulol contain?[1]

(ii)	During chromatography, the solvent evaporates and then diffuse throughout the chromatography jar.	es
	Describe, in terms of kinetic particle theory, the change in movement arrangement of the ethanol molecules when they evaporate and diffusion throughout the chromatography jar.	
		• • • •

Section B (20 marks)

Answer any **two** questions in the spaces provided.

8		The alcohols form a homologous series. The first member of this homologous series methanol.									
	(a)	(i)	Explain what is meant by a homologous series using alcohol as an example.								
			[2]								
		(ii)	Give the name and draw the structural formula of the third member of this homologous series.								
			Name:								
			Structural Formula:								
			[2]								
	(b)	Nam	ne the product(s) formed when the third member is								
		(i)	reacted with an excess of oxygen to produce heat.								
			[1]								
		(ii)	oxidised by acidified potassium manganate.								
			[1]								
	(c)		nanol and ethanoic acid reacts to form a new compound, methyl ethanoate, ording to the following equation:								
			CH ₃ OH + CH ₃ COOH → CH ₃ COOCH ₃ + H ₂ O								
		(i)	What is the mass of methyl ethanoate formed when 3.2 g of methanol reacts with excess ethanoic acid.								

Sodium is an element found in Group I of the Periodic Table.

(a)		a dot-and-cross diagram to show how the electrons are arranged in a um atom.
(b)		[1] e two physical properties of sodium which is unique to Group I elements. [2]
(c)		ium can react with sulfur to form the compound sodium sulfide. Sodium de has a high melting point of 1176 °C
	(i)	Use a dot-and-cross diagram to show the bonding present in sodium sulfide. Show only the valence electrons.
	(ii)	[2] Explain, using bonding, why sodium sulfide has a high metling point.
		ro1
	(iii)	
		[2]
(d)		action occurred when a piece of sodium metal was added to a beaker of er containing a few drops of Universal Indicator.
	Stat	e one observation that can be made from this reaction.
		[1]

10 (a) Most atoms of iron has the symbol ⁵⁶Fe.

Explain what the number 56 tell you about the particles in an atom of iron.

(b) Many parts of a bicycle contain iron. Iron is extracted from iron (III) oxide. One problem with using iron is that it rusts.

Fig 10.1 shows the cycle of changes that happen when iron is extracted and then rusts.

Fig 10.1

Use oxidation states to show which change involves oxidation and which change involves reductions.

oxidation:	
	[2]
reduction:	
	[2]

(c) Iron can be extracted from Iron(III) oxide, Fe₂O₃ using carbon monoxide.

$$Fe_2O_3$$
 (s) + 3CO (g) \rightarrow 2Fe(l) + 3CO₂(g)

[Relative atomic mass, A_r: Fe, 56; O,16; C,12]

(i) Calculate the mass of iron (III) oxide needed to manufacture 5 kg of iron.

(ii) Use the equation to calculate the volume of carbon dioxide gas produced at room temperature pressure when 5 kg of iron is manufactured.

[The volume of one mole of any gas is 24 dm³ at room temperature and pressure]

[2]

END OF PAPER

DATA SHEET

The Periodic Table of Elements

		2 He	4	0	<u>e</u>	ة <u>Q</u>	8	<u>-</u>	등 으	ဖွ	٦	pton ,	4	4	e	non	31	မ္တ	- L	qou	1				
		그 원		_	_			_	ar 7		_	- Kr	_	4,	_	×e	_	_	<u></u>	Ē	_				
				6	ш	fluorine 19	17	Ö	chlorine 35.5	35	ă	bromine	80	23	Н	iodine	127	85	At	astatine	ı				
				8	0	oxygen 16	16	တ	sulfur 32	34	Se	selenium	6/	52	e H	tellurium	128	84	g G	polonium	I	116	_	livermorium	I
	^			7	Z	nitrogen 14	15	Ф	phosphorus 31	33	As	arsenic	75	5	Sp	antimony	122	83	Ξ	bismuth	209				
	\geq			9	O	carbon 12	14	S	silicon 28	32	Эe	germanium	/3	20	ß	ţį	119	82	g G	lead	207	114	Εį	flerovium	ı
	≡			5	മ	boron 11	13	Αl	aluminium 27	31	Ga	gallium	0/	49	띰	indium	115	84	<u>1</u>	thallium	204				
							•			99	Zu	zinc	දිද	48	පි	cadminm	112	80	윈	mercury	201	112	ű	copernicium	-
										53	ŋ	copper	64	47	Ag	silver	108	62	Au	plog	197	111	Rg	roentgenium	1
i an										28	Z	nickel	59	46	<u>B</u>	palladium	106	78	亡	platinum	195	110	Ds	darmstadtium	ı
Group										27	රි	cobalt	59	45	돲	rhodium	103	77	<u>'</u>	iridium	192	109	Σţ	meitnerium	ı
		1 H hydrogen	1							26	Бe	io Loui	96	44	R	ruthenium	101	9/	ő	osminm	190	108	Ϋ́	hassium	ı
										25	Mn	manganese	52	84	ပ	technetium	-	75	å	rhenium	186	107	윰	pohrium	ı
				umber	ō	nass				24	ర్	chromium	52	42	ω	nolybdenum	96	74	≥	tungsten	184	106	Sg	seaborgium	1
		:	Key	proton (atomic) number	mic symb	name relative atomic mass				23												105			1
				proton	ato	relativ				22	ï	titanium	48	40	Zr	zirconium	91	72	Ï	hafnium	178	104	¥	Rutherfordium	1
			1				•			21	တွ	scandium	45	39	>-	yttrium	89	57 – 71	lanthanoids			89 – 103	actinoids		
	=			4	æ	beryllium 9	12	Mg	magnesium 24	20	Ö	calcium	40	38	ഗ്	strontium	88	56	Ba	barium				radium	
	_			က	 	lithium 7	7	Š	sodium 23	19	~	potassium	33	37	Rb	rubidium	85	55	S	caesium	133	28	Ľ.	francium	ı

7.1]	lutetium	175	103	۲	lawrencium	I
70	Υp	ytterbium	173	102	8	nobelium	ı
69	드	thulium	169	101	ΡM	mendelevium	I
89	ш	erbium	167	100	F	fermium	ı
29	운	holmium	165	66	Es	einsteinium	ı
99	Ճ	dysprosium	163	86	ರ	californium	I
99	Тр	terbium	159	26	益	berkelium	ı
64	g	gadolinium	157	96	S	curium	ı
63	Ш	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pu	plutonium	1
61	Pm	promethium	I	93	ď	neptunium	ı
90	P	neodymium	144	92	\supset	uranium	238
59	ፚ	praseodymium	141	91	P a	protactinium	231
58	Ö	cerium	140	06	ഥ	thorium	232
25	La	lanthanum	139	89	Ac	actinium	ı
lanthanoids				actinoids			

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).