1 n(Be) present =
$$\frac{0.09}{9}$$
 = 0.01 mol

В

no. of neutrons present per ${}_{4}^{9}$ Be atom = 5

 \therefore no. of neutrons present in 0.09 g of ${}^{9}Be = 5(0.01)L$ = **0.05**L

2
$$ClO_2 + e^- \longrightarrow ClO_2^-$$
 [R]

C

Since no. of electrons transferred must be equal

- \Rightarrow 1 mol of ClO₂ gained 1 mol of e
- \Rightarrow another 1 mol of ClO_2 lost 1 mol of e to form Q
- ⇒ O.N. of chlorine in Q changes from +4 (original) to +5 (final)

$$\overline{ClO_2}$$
 + 2OH⁻ \longrightarrow ClO_3^- + H₂O + e⁻ [O] balanced equation: $2ClO_2$ + 2OH⁻ \longrightarrow ClO_3^- + ClO_2^- + H₂O

3 molecular formula of $G = C_7H_{12}O_3$

Α

$$C_7H_{12}O_3 + \frac{17}{2}O_2 \longrightarrow 7CO_2 + 6H_2O$$

- 4 Presence of H covalently bonded to O and available lone pairs of electrons on O in both water and methanol, hence hydrogen bonds will be the strongest IMF.

 Methoxymethane does not have H covalently bonded to O, hence only permanent dipoles.
- no. of bpno. of lpshape should beA,B22bent (non-linear)C,D31trigonal pyramidal

Α

- The behaviour of real gas deviates from ideality because volume of gas particles is not insignificant compared to the overall volume occupied by the gas (option **D**). There are also significant intermolecular forces of attraction between the gas particles (option **C**), resulting in inelastic collisions (option **A**).
- Lattice energy is proportional to $\frac{q_+q_-}{(r_++r_-)}$. Thus the bigger the charge, and the smaller the inter–ionic distance, the more exothermic the lattice energy is.

Size of cation: $Cs^+ > Na^+$; size of anion: $Cl^- > F^-$

Since Cs⁺ and Cl⁻ are the larger cation and anion respectively, <u>CsC</u>l will have the <u>least</u> exothermic lattice energy (-661 kJ mol⁻¹).

8
$$\Delta H_{\rm f} = \Sigma \Delta H_{\rm f} \text{ (products)} - \Sigma \Delta H_{\rm f} \text{ (reactants)}$$

= $[-1273 + 6(0)] - [6(-394) + 6(-286)]$
= $+2807 \text{ kJ mol}^{-1} > \mathbf{0}$

As the forward reaction results in a formation of solid (with no change in no. of gaseous molecules), there will be less ways of arranging the particles and ΔS is < 0.

C

9
$$Cl_2 + 2e \longrightarrow 2Cl^ +1.36 \text{ V}$$

 $Br_2 + 2e \longrightarrow 2Br^ +1.07 \text{ V}$
 $I_2 + 2e \longrightarrow 2I^ +0.54 \text{ V}$
 $(SCN)_2 + 2e \longrightarrow 2SCN^ x \text{ V}$

+0.54.

 $(SCN)_2 + 2e \implies 2SCN^- \times V$ Since both aq. Cl_2 and aq. Br_2 are able to oxidise SCN^- ion to $(SCN)_2$ while aq. I_2 is not able to, the $E^0(SCN)_2/SCN^-$ must be less positive than +1.07 but more positive than

- rate = $k[P][Q]^2$ If [P] is doubled while [Q] is halved, <u>rate is halved</u>. Hence only <u>half of the volume</u> collected in first experiment will be produced in the first minute of the 2^{nd} experiment.
- 11 To determine the order of reaction wrt H⁺ ions, we have to monitor how the <u>rate of reaction changes as the concentration of H⁺ ions is changed, while keeping all other factors constant.</u>

12
$$[H^+] = [HNO_3]$$
 after dilution = $\frac{10 \times 0.01}{(90 + 10)}$
= 0.001 mol dm⁻³
pH = 3

13
$$2H_2(g) + CO(g) = CH_3OH(g)$$
initial amount 2.0 1.0 0
change in amount $-x$ $-\frac{1}{2}x$ $+\frac{1}{2}x$
amount at eqm 2.0 - x 1.0 - $\frac{1}{2}x$ $\frac{1}{2}x$

$$concentration at eqm \frac{(2.0-x)}{0.5} \frac{(1.0-\frac{1}{2}x)}{0.5}$$
 $\frac{(\frac{1}{2}x)}{0.5}$

- 14 A bluish green copper B green barium
 - C lilac potassium
 - **D** orange/red/brick red calcium

Group II metal	up II metal colour of flame in oxygen	
Mg	intense / brilliant white	
Ca	intense / brilliant white with tinge of red (brick-red)	
Sr	almost white with tinge of red	
Ва	white with pale green tinges	

15		deduction	likely identity of Z	
	Α	Z is a metal.	could be sodium, magnesium or aluminium	
	В	Z is probably in Group V.	is phosphorus	
	С	Z is a covalent chloride.	could be aluminium or phosphorus based on the formula (ZCl ₃)	
D Z forms an amphoteric hywith NaOH.		Z forms an amphoteric hydroxide with NaOH.	is aluminium	

Alternatively

Option **A** and **B** are mutually exclusive, while the conclusion for **C** is correct for both **A** and **B**. Hence **D** is the key to answering this question. Using your knowledge of A/Cl_3 and PCl_3 with water, you can then conclude that Z is aluminium.

16 Dissolving CuC l_2 in water will give the **blue** [Cu(H₂O)₆]²⁺(aq) and C l^- (aq).

D

C

В

When concentrated HCl is added to an aqueous solution of Cu $^{2+}$, ligand exchange occurs where Cl⁻ displaces the H $_2$ O ligands, forming the **yellow [CuCl_4]**²⁻.

$$[Cu(H_2O)_6]^{2+} + 4Cl^- \implies [CuCl_4]^{2-} + 6H_2O$$

С

Α

В

$$Cl_2(g) + 2OH^-(aq) \longrightarrow Cl^-(aq) + ClO^-(aq) + H_2O(l)$$

Hot condition

The above reaction will <u>take place 1^{st} </u> before the ClO^- formed undergoes <u>further</u> disproportionation

$$3ClO^{-}(aq) \longrightarrow 2Cl^{-}(aq) + ClO_3^{-}(aq)$$

Combining the 2 equations,

$$3Cl_2(g) + 6OH^-(aq) \longrightarrow 5Cl^-(aq) + ClO_3^-(aq) + 3H_2O(l)$$

- **18** A Down the group, the charge density of M²⁺ <u>decreases</u> since ionic radius increases.
 - **B** Reactivity of Group II metals increases down the group.
 - \bullet $\triangle H_{\text{solution}}$ becomes more negative down the group and solubility increases.
 - **D** From option **A** and since polarising power α charge density, extent of weakening of covalent bond in nitrate ion decreases and thermal stability increases.
- 19 Given that the unknown is dibasic [2 x $-CO_2H$], you can deduce the molecular mass of the alkyl chain = 146 2(45) = 56.

Hence, the no. of C atoms = $4 [56 \div 14 (each > CH_2)] + 2 (from -CO_2H) = 6$.

20

Note: There is a plane of symmetry within a molecule of Q.

21 The reaction pathway involving bromoalkane shows a 2-step mechanism. Hence, you can conclude that it occurs via <u>unimolecular nucleophilic substitution</u> (S_N1).

point	X	Y	Z
	CBr	C+	COH
species present	lengthening and subsequent breaking of C–Br bond	trigonal planar carbocation intermediate formed	attack on C ⁺ by OH ⁻ nucleophile and subsequent forming of C–OH bond

©2020ASRJC/CHEM 3

22

CH₂CH₂CONH₂ CH₂CH CO₂H hydrolysis

$$H_2N$$
 H_2N H_2N H_2O H_2OH H_2O H_2OH H_2O

 $RCO_2H + NaOH \longrightarrow RCO_2Na + H_2O$ $C_6H_5OH + NaOH \longrightarrow C_6H_5ONa + H_2O$ $RCONHR' + NaOH \longrightarrow RCO_2Na + R'NH_2$

Since both hydrolysis and acid-base involves a 1:1 reacting mole ratio with NaOH, 0.7 mol of NaOH (0.4 mol for hydrolysis and 0.3 mol for acid-base) will react with 0.1 mol of T.

Note: NaOH has no reaction with the alcohol present (RCH₂OH).

2,3-dihydropropanal

1.3-dihvdropropanone

- only 2,3-dihydropropanal contains a chiral carbon.
- В only 2,3-dihydropropanal gives silver precipitate.
- C absence of CH₃CH(OH)R and CH₃COR ⇒ both do not give yellow precipitate.
- they have the same molecular (C₃H₆O₃) and empirical (CH₂O) formulae.

FYI (mechanism of the iodoform test)

Step 1: acid-base reaction

Step 4: nucleophilic (acyl) substitution

Step 4 and 5 can be combined and is known as base-catalysed hydrolysis

Hence it is not possible for both to give yellow precipitate with I₂/OH⁻. However, RCOCH₂I (RCOCHI₂, RCOCI₃) gives yellow precipitate with I₂/OH⁻.

D

- **25** A nucleophilic (acyl) substitution occurs readily and an immediate white precipitate would be observed.
 - B nucleophilic substitution does not occur due to the <u>delocalisation of the lone pair</u> of electrons on the C*l* atom into the benzene ring, creating a <u>partial double bond</u> character in the C–C*l* bond.

D

D

- c same as A
- nucleophilic substitution occurs upon boiling with NaOH(aq) and the resulting mixture contains Cl^- ions. upon cooling, acidification and addition of AgNO₃(aq), white precipitate would be observed.

Peptide P contains 7 amino acid residues.

Alternatively

- A not possible to get gly-lys and ser-gly-ala fragments
- **B** not possible to get gly-lys fragment
- **D** not possible to get lys-ser fragment

©2020ASRJC/CHEM 5

K isolated

- **28** A presence of (aliphatic) aldehyde ⇒ oxidation occurs and brick–red precipitate observed
 - **B** presence of C=C bond \Rightarrow mild oxidation occurs and purple MnO₄⁻/H⁺ turns colourless

C

В

В

В

D

- **C** presence of phenol \Rightarrow acid–base reaction occurs; both phenol and NaOH are colourless and similarly, their resulting solution [$C_6H_5O^-Na^+(aq)$].
- **D** presence of phenol ⇒ electrophilic substitution occurs and a yellow solid formed (2–nitrophenol or 4–nitrophenol)

electrophilic addition – can add up to 2 Br atoms per C=C

HO

electrophilic substitution – can add up to 3 Br atoms per phenol (2 in this case because the phenol is para-substituted)

carboxylic acid — O ketone
HO—C—C—CH₃

- 1 absence of (aliphatic) aldehyde ⇒ no brick–red precipitate observed
- 2 presence of ketone ⇒ orange precipitate observed
- 31 electronic configuration of S in its ground state: [Ne] 3s² 3p⁴ (2 unpaired electrons) B
 - 1 ₂₂Ti: [Ar] 3d² 4s² (2 unpaired electrons)
 - 2 ₂₈Ni: [Ar] 3d⁸ 4s² (2 unpaired electrons)
 - 3 ₂₇Co: [Ar] 3d⁷ 4s² (3 unpaired electrons)
- 32 1 NH₃ is the base while NH₄⁺ is its conjugate acid.
 - A <u>conjugate acid/base pair</u> contains the <u>same number of electrons</u> because they differ only by an H⁺ ion (no electron).

 Or NH₃ accepts an H⁺ ion (no electron) to give NH₄⁺.
 - 3 Absence of lone pair of electrons in $NH_4^+ \Rightarrow$ cannot act as a ligand.
- 33 $\Delta H_{\text{sol}} = -\text{L.E.} + \Delta H_{\text{hyd}} \text{ of } M^{2+} + \Delta H_{\text{hyd}} \text{ of } SO_4^{2-}$

From the equation, you can then conclude that the explanation is independent of the sum of first and second ionisation energies.

- **34 1** $H_2(g)$ should be at **298 K** (not 273 K) and 101 kPa.
 - 2 [H⁺] should be at a concentration of 1.0 mol dm⁻³ (standard conditions). Therefore, the [H₂SO₄] should be 0.5 mol dm⁻³, not 1.0 mol dm⁻³.
 - 3 Pt, coated with finely divided platinum, is correctly used.
- **35 2** Scandium only forms 1 oxidation state (+3).
 - 3 Absence of d orbital e in $Sc^{3+} \Rightarrow$ solution containing Sc^{3+} is colourless.

©2020ASRJC/CHEM 6

36 Element X is arsenic (Group V) – use your knowledge of phosphorus to predict properties Α of element X. Phosphrous forms 2 chlorides – PCl_5 and PCl_3 . Phosphrous forms 2 oxides $-P_4O_6$ (P_2O_3) and P_4O_{10} . 2 Both P₄O₆ and P₄O₁₀ are acidic and react with alkali to form a hydrogen phosphite (HPO₃²⁻) and phsophate (PO₄³⁻) salt respectively. 37 1 Nucleophilic substitution occurs. Α Nucleophilic substitution occurs. 2 3 Elimination occurs 38 A catalytic converter is able to oxidise unburnt hydrocarbons and carbon monoxide to В carbon dioxide (CO₂) while reducing oxides of nitrogen (NOx) to nitrogen (N₂). 39 1 no hydrogen bonding (an intermolecular forces). C hydrogen bonding between peptide linkages (-CONH-) along the polypeptide 2 chain. hydrogen bonding between polar R groups with >NH or -OH present. 3 40 molecular formula of E is $(HO-C_6H_4-N)_2 = C_{12}H_{10}O_2N_2$. Α ∴ empirical formula of E is C₆H₅ON, which is also the molecular and empirical formulae of G (C₆H₅NO).

Since the molecular formula of F and G are C₁₂N₂H₁₀O₂ and C₆H₅NO respectively,

molecular formula of F is C₁₂N₂H₁₀O₂.

.: E and F are structural isomers.

 M_r of F is twice that of G.

2

3

©2020ASRJC/CHEM 7