Paper 2

1. (i) Express
$$\frac{7x+9}{2x^2-9x-5}$$
 in partial fractions. [3]
(ii) Hence find $\int_6^7 \frac{7x+9}{2x^2-9x-5} dx$ [3]

1. (i)
$$\frac{7x+9}{2x^2-9x-5} = \frac{7x+9}{(2x+1)(x-5)}$$
Let $\frac{7x+9}{2x^2-9x-5} = \frac{A}{x-5} + \frac{B}{2x+1}$
 $7x+9 = A(2x+1) + B(x-5)$
Let $x = 5$, $44 = 11A$
 $A = 4$
Let $x = -\frac{1}{2}$, $7\left(-\frac{1}{2}\right) + 9 = B\left(-\frac{1}{2} - 5\right)$
 $\frac{11}{2} = -\frac{11}{2}B$
 $B = -1$
 $\frac{7x+9}{2x^2-9x-5} = \frac{4}{x-5} - \frac{1}{2x+1}$
(ii) $\int_{6}^{7} \frac{7x+9}{2x^2-9x-5} dx$
 $= \int_{6}^{7} \left(\frac{4}{x-5} - \frac{1}{2x+1}\right) dx$
 $= \left[4\ln(x-5) - \frac{1}{2}\ln(2x+1)\right]_{6}^{7}$
 $= (4\ln 2 - \frac{1}{2}\ln 15) - \left(4\ln 1 - \frac{1}{2}\ln 13\right)$
 $= 2.70$ (6 marks)

2. Given that $f(x) = 2x^3 - 3x^2 - 3x + 22$ is exactly divisible by $2x^2 + bx + c$,

(i) find the value of b and of c ,	[4]
(ii) show that $2x^3 - 3x^2 - 3x + 22 = 0$ has only one real root,	[3]

[2]

(iii) find the remainder when f(x) is divided by (2x+3).

2. (i)
$$f(x) = 2x^{3} - 3x^{2} - 3x + 22$$
$$f(-2) = 2(-2)^{3} - 3(-2)^{2} - 3(-2) + 22$$
$$= 0$$
$$(x+2) \text{ is a factor.}$$

Let $f(x) = 2x^{3} - 3x^{2} - 3x + 22 = (x+2)(2x^{2} + bx + c)$
Comparing coefficient of x^{2} , $b+4 = -3$
 $b = -7$
 $c = 11$
(ii) $f(x) = 0$
$$(x+2)(2x^{2} - 7x + 11) = 0$$
$$x = -2, \quad 2x^{2} - 7x + 11 = 0$$
Discriminant $= (-7)^{2} - 4(2)(11)$
$$= -39 < 0$$
$$2x^{2} - 7x + 11 = 0$$
 has no real roots.
Hence, $f(x) = 0$ has only one real
roots.
(iii) $f\left(-\frac{3}{2}\right) = 2\left(-\frac{3}{2}\right)^{3} - 3\left(-\frac{3}{2}\right)^{2} - 3\left(-\frac{3}{2}\right) + 22$
$$= 13$$
(9 marks)

3. The roots of the quadratic equation $2x^2 - 3x - 4 = 0$ are α and β .

(i) Without using a calculator, show that
$$\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{99}{32}$$
. [5]

(ii) Hence find the quadratic equation whose roots are
$$\frac{\alpha}{\beta^2}$$
 and $\frac{\beta}{\alpha^2}$. [2]

3.	(i)	$2x^2 - 3x - 4 = 0$	
		$\alpha + \beta = \frac{3}{2}$	
		$\alpha\beta = -2^{2}$	
		$\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{\alpha^3 + \beta^3}{\alpha^2 \beta^2}$	
		$=\frac{(\alpha+\beta)(\alpha^2+\beta^2-\alpha\beta)}{\alpha^2\beta^2}$	
		$=\frac{(\alpha+\beta)[(\alpha+\beta)^2-3\alpha\beta]}{\alpha^2\alpha^2}$	
		$\alpha \beta$	
		$\frac{3}{2}\left[\left(\frac{3}{2}\right)^2 - 3(-2)\right]$	
		$\equiv \frac{1}{\left(-2\right)^2}$	
		$\frac{3}{2}\left(\frac{9}{4}+6\right)$	
		= $$	
		$=\frac{99}{22}$	
		32	
	(ii)	$\left(\frac{\alpha}{\beta^2}\right)\left(\frac{\beta}{\alpha^2}\right) = \frac{1}{\alpha\beta}$	
		$=-\frac{1}{2}$	
		2	
		Quadratic equation,	
		$x^{2} - \frac{99}{22}x - \frac{1}{2} = 0$ or $32x^{2} - 99x - 16 = 0$	
		32 2 (7	marks)

4. The diagram below shows a quadrilateral *BCDF* whose vertices lie on the circumference of a circle. The tangent to the circle at the point *F* meets *CB* extended at *A* and *CD* extended at *E*. The lines *CF* and *BD* intersect at *G* and BG = GF.

(i) State an angle which is equal to angle *BFA*.

(ii) Prove that angle FDE = angle FAB + angle FCB.

(iii) Prove that quadrilateral *BCDF* is a trapezium.

4.	(i)	$\angle FCB = \angle BFA \text{ or } \angle BDF (Alternate Segment Theorem)$	
	(i)	$\angle CBF = \angle FAB + \angle BFA (\text{Exterior angle of } \Delta)$ = $\angle FDE \qquad (\text{ext } \angle \text{ of a cyclic quadrilateral})$ $\therefore \angle FDE = \angle FAB + \angle FCB.$	
	(iii)	$\angle FBG = \angle BFG$ (Base $\angle s$ of an isos \triangle) $\angle FBG = \angle FCD$ ($\angle s$ in the same segment) $\angle FCD = \angle BFG$ Since the alternate angles, $\angle FCD$ and $\angle BFG$ are equal, BF is parallel to CD. Hence, quadrilateral <i>BCDF</i> is a trapezium.	
			(6 marks)

[1]

[2]

[3]

5. Solve the following equations.

(i)
$$(2^{3x+2})(3^{x-1}) = 32$$
 [2]

(ii)
$$7(3^{1-x}) = 3^{x+1} + 2$$
 [4]

(iii)
$$\log_3(x+5) - \log_{\sqrt{3}}(x-1) = \log_3 2$$
 [4]

_	(1)		
5.	(i)	$2^{3x+2}3^{x-1} = 32$	
		$2^{3x}3^x = 32 \times \frac{3}{2}$	
		4	
		$24^{x} = 24$	
		x = 1	
	(ii)	$7(3^{1-x}) = 3^{x+1} + 2$	
		Let $t = 3^x$	
		21 24 2	
		${t} = 5t + 2$	
		$3t^2 + 2t - 21 = 0$	
		(3t-7)(t+3) = 0	
		$t = 2^{x} = 7$ 2 (mai)	
		$1-3$ $-\frac{1}{3}$, -5 (ref)	
		lg(7)	
		$\operatorname{Ig}\left(\frac{3}{3}\right)$	
		$x = \frac{1}{\lg 3}$	
		= 0.771	
	(iii)	$\log_3(x-1)$	
		$\log_3(x+5) - \frac{\log_3 2}{\log_2 \sqrt{3}} = \log_3 2$	
		$\log_{10}(r-1)$	
		$\log_3(x+5) - \frac{\log_3(x-1)}{1} = \log_3 2$	
		$\frac{1}{2}\log_3 3$	
		r+5	
		$\log_3 \frac{x+y}{(x-1)^2} = \log_3 2$	
		(x-1)	
		$x + 5 = 2(x - 1)^{2}$	
		$x + 5 = 2x^2 - 4x + 2$	
		$2x^2 - 5x - 3 = 0$	
		(2x+1)(x-3) = 0	
		$x = -\frac{1}{2}$ (rei). 3	
		2	
			(10 marks)

6. A curve has the equation $y = \frac{x}{e^{2x}}$. The point (p, q) is a stationary point on the curve.

Determine

(i) the exact value of p and of q, [4]

[3]

[1]

- (ii) the nature of the stationary point (p, q).
- Hence

(iii) write down the values of x for which y is increasing.

6.	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{e^{2x}}{\mathrm{d}x}$	$\frac{x^2 - x(2e^{2x})^2}{4x}$	<u>()</u>			
		$dx = \frac{1-e^{2}}{e^{2}}$	$\frac{2x}{2x}$				
		At (p, q),	$\frac{1-2p}{e^{2p}}$	$\frac{2}{2} = 0$			
			$p = \frac{1}{2}$	$\frac{1}{2}, q = \frac{1}{2\epsilon}$	-		
	(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -$	$\frac{2e^{2x}-(1)}{(e^{2x})}$	$(-2x)(2e)^{2x}$	(2x)		
		=	$\frac{4+4x}{e^{2x}}$				
		At (p, q),	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} =$	$=-\frac{2}{e}<0$			
		Hence (p	, <i>q</i>) is a r	naximun	1 point.		
		Alternati	ve Meth	<u>od</u>			
		x	0.5-	0.5	0.5^{+}		
		$\frac{\mathrm{d}y}{\mathrm{d}x}$	+	0	_		
		Slope	/	_	\		
		Hence (p	, <i>q</i>) is a r	naximun	1 point.	-	
	(iii)	y is incr	easing w	hen $x < \frac{1}{2}$	$\frac{1}{2}$.		
							(8 marks)

7. The population, *P*, of a certain species of fish after *t* years is given by $P = 1750(1 + 2e^{-kt}).$

When t = 2, the population is 4600.

(i) Find the value of *k*.

Any species is considered as an "Endangered Species" if its population falls below 2500.

- (ii) Determine, with working, whether this species of fish will become an "Endangered Species" after 10 years. [2]
- (iii) Hence sketch the population-time graph.

7.	(i)	When $t = 2$, $P = 4600$,	$4600 = 1750(1 + 2e^{-2k})$	
			$2e^{-2k} - \frac{4600}{1}$	
			$2e -\frac{1}{1750} - 1$	
			$2^{-2k} - 57$	
			$e = \frac{1}{70}$	
			21 + 12(57)	
			$-2k = \ln\left(\frac{1}{70}\right)$	
			$k = -\frac{1}{2} \ln \left(\frac{57}{70} \right)$	
			2(70)	
			= 0.102/2 ~ 0.103	
			≈ 0.105	
	(ii)		$\frac{1}{1}\ln(\frac{57}{5}) \times 10$	
		When $t = 10$,	$P = 1750[1 + 2e^{2^{m}(70)^{210}}]$	
			= 3003> 2500	
		Since the population of	the fish is greater than 2500, the	
		species of fish will not b	e considered as an "Endangered	
		Species".		
		Alternative wiethod	500 - 1750(1 + 2) = 0.10272t	
		when $P = 2500$, 2	$500 = 1/50(1 + 2e^{-1})$	
		$\frac{2}{2}$	$\frac{500}{1} - 1 = 2e^{-0.10272t}$	
		1	750	
		e	$-0.10272t = \frac{3}{100000000000000000000000000000000000$	
			14	
		_	$0.10272t = \ln\frac{3}{14}$	
			la ³	
		t	$- \frac{111}{14}$	
		l	-0.10272	
			=15.0>10	
		Since the population of	the fish takes 15 years to fall below	
		2500, the species of "Endangered Species"	tish will not be considered as an	
		Endungered Species .		

[3]

[2]

8. The depth of water, *d* metres, at a pier, *t* hours after low tide, can be modelled by the formula $d = c - a\cos(bt)$,

where a, b and c are positive constants.

(i) If low tides occur every 12 hours, find the value of b. [1]

Given that the depth of water at the pier was 2 metres during low tide and 8 metres during high tide,

[2]

(ii) find the value of *a* and of *c*.

The pier will be open when the depth of the water is more than 4 m.

(iii) For how long will the pier be open in a 12-hour period after low tide. [3]

8.	(i)	$b = \frac{2\pi}{12} = \frac{\pi}{6}$	
	(ii)	$a = \frac{8-2}{2} = 3$	
		<i>c</i> = 5	
	(iii)	$d = 5 - 3\cos\left(\frac{\pi}{6}t\right)$	
		When $d = 4$, $5 - 3\cos\left(\frac{\pi}{6}t\right) = 4$	
		$\cos\left(\frac{\pi}{6}t\right) = \frac{1}{3}$	
		Basic angle = 1.2309	
		$\frac{\pi}{6}t = 1.2309, 5.0522$	
		t = 2.3508, 9.6489	
		Length of time for which the pier is	
		open	
		=9.6489 - 2.3508	
		$= 7.30 \mathrm{h}$	
			(6 marks)

9. The diagram shows a solid which consists of a cube fixed on top of a cuboid. The cube has sides x cm. The cuboid has a square base of side 2x cm and a height of y cm.

Given that the volume of the solid is 270 cm³,

(i) show that the total surface area, $A \text{ cm}^2$, of the solid is given by

$$A = 10x^2 + \frac{540}{x}.$$
 [5]

Given that *x* can vary,

(ii) find the value of *x* for which *A* has a stationary value and determine whether this value of *A* is a maximum or a minimum. [5]

9.	(i)	$x^3 + 4x^2y = 270$	
		$4x^2y = 270 - x^3$	
		$270 - x^3$	
		$y = \frac{1}{4x^2}$	
		$A = 4x^2 + 2(2x)^2 + 4(2xy)$	
		$=12x^{2}+8x\left(\frac{270-x^{3}}{4x^{2}}\right)$	
		$=12x^2+\frac{540}{x}-2x^2$	
		$=10x^2 + \frac{540}{x}$	
	(ii)	$\frac{\mathrm{d}A}{\mathrm{d}x} = 20x - \frac{540}{x^2}$	
		When $\frac{dA}{dx} = 0$, $20x - \frac{540}{x^2} = 0$	
		$20x^3 = 540$	
		$x^{3} = 27$	
		$\frac{d^2 A}{dr^2} = 20 + \frac{1080}{r^3}$	
		$d^2 A$	
		When $x = 3$, $\frac{d^2 A}{dx^2} = 60 > 0$	
		Hence, A has a minimum value when $x = 3$.	
			(10 marks)

[Turn over

- 10. The diagram shows part of the curve $y = \frac{8}{\sqrt{3x+4}}$. The curve intersects the *y*-axis at P(0, 4). The normal to the curve at *P* intersects the line x = 4 at the point *Q* and the line segment *QR* is parallel to the *y*-axis.
 - (i) Find the coordinates of *Q*. [5]
 - (ii) Find the ratio of the area of the shaded region to the area of the trapezium *OPQR* in the form 1: *n*.

10.	(i)	$\frac{dy}{dx} = 8\left(-\frac{1}{2}\right)(3x+4)^{-\frac{3}{2}}(3)$ = $-\frac{12}{(3x+4)^{\frac{3}{2}}}$ At P , $\frac{dy}{dx} = -\frac{12}{4^{\frac{3}{2}}}$ = $-\frac{3}{2}$ Equation of PQ , $y = \frac{2x}{3} + 4$ At Q , $x = 4$, $y = \frac{20}{3}$
	(;;)	$\therefore Q\left(4,\frac{20}{3}\right)$
	(II)	Area of $A = \int_0^1 8(3x+4)^{\frac{1}{2}} dx$ $= \left[\frac{8(3x+4)^{\frac{1}{2}}}{\frac{1}{2} \times 3} \right]_0^4$ $= \left[\frac{16}{3} \sqrt{3x+4} \right]_0^4$ $= \frac{16}{3} (4-2)$ $= \frac{32}{3} \text{ unit}^2$
		Area of <i>OPQR</i> = $\frac{1}{2} \times \left(4 + \frac{20}{3}\right) \times 4$ = $\frac{64}{3}$ unit ²

Area of shaded region : Area of <i>OPQR</i> $=\frac{32}{3}:\frac{64}{3}$ =1:2	
	(10 marks)

- **11.** (a) (i) Prove that $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$.
 - (ii) Find all the angles between $-\frac{\pi}{2}$ and π which satisfy the equation $\frac{4\cos^3\theta - 3\cos\theta}{\cos\frac{3\theta}{2}} = 4\sin\frac{3\theta}{2}.$ [4]
 - (b) Solve the equation $6\cos x 3\sec x = 7$ for $-180^\circ \le x \le 180^\circ$.

11.	(a)(i)	$\cos 3\theta = \cos(2\theta + \theta)$	
		$= \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$	
		$=(2\cos^2\theta-1)\cos\theta-(2\sin\theta\cos\theta)\sin\theta$	
		$= 2\cos^3\theta - \cos\theta - 2\cos\theta(1 - \cos^2\theta)$	
		$= 2\cos^3\theta - \cos\theta - 2\cos\theta + 2\cos^3\theta$	
		$=4\cos^3\theta-3\cos\theta$	
	(11)	$\frac{4\cos^3\theta - 3\cos\theta}{4\sin^2\theta} = 4\sin^2\theta$	
	(ii)	$\cos\frac{3\theta}{2}$ 2	
		$\frac{2}{2}$	
		$\cos 3\theta = 2\left(2\sin \frac{3\theta}{2}\cos \frac{3\theta}{2}\right)$	
		$\cos 3\theta = 2\sin 3\theta$	
		$\tan 3\theta = \frac{1}{2}$	
		2	
		Basic $\angle = 0.46364$	
		$3\theta = -2.6779, 0.46364, 3.6052, 6.74682$	
		$\theta = -0.893, \ 0.155, \ 1.20, \ 2.25$	
	(b)	$6\cos x - 3\sec x = 7$	
	(3	
		$6\cos x - \frac{3}{\cos x} = 7$	
		cos x	
		$6\cos^{-}x - 1\cos x - 3 = 0$	
		$(3\cos x + 1)(2\cos x - 3) = 0$	
		$\cos x = -\frac{1}{2}, \frac{3}{2}$ (NA)	
		$\frac{3}{2}$	
		$Dasic \angle = 10.525^{\circ}$ $x = -1005^{\circ} - 1005^{\circ}$	
		$\lambda = -107.3$, 107.3	(11
			(11 marks)

[3]

[4]

12. Solutions to this question by accurate drawing will not be accepted.

The diagram, which is not drawn to scale, shows a trapezium ABCD in which AB is parallel to DC and BD is parallel to the *y*-axis. The coordinates of A and of B are (0, 2) and (6, 11) respectively.

E(h, 5) is the midpoint of BC such that AB = BE and h > 0.

(i)	Show that the value of h is 15.	[2]

Find

(ii) the coordinates of C,	[2]
----------------------------	-----

- (iii) the equation of DC, [3]
- (iv) the coordinates of *D*. [1]

Given that the area of triangle $ABE = 58\frac{1}{2}$ units², (v) find the perpendicular distance from *B* to the line segment *AE*. [2]

12. (i)

$$AB = BE = \sqrt{6^2 + 9^2} = \sqrt{(6 - h)^2 + 6^2}$$

$$9^2 = (6 - h)^2$$

$$6 - h = \pm 9$$

$$h = -3, 15$$

$$h > 0, \therefore h = 15$$
(ii)
Let $C(x, y)$.

$$\left(\frac{6 + x}{2}, \frac{11 + y}{2}\right) = (15, 5)$$

$$x = 24, y = -1$$

$$C(24, -1)$$
(iii)
Gradient of $DC = \frac{9}{6} = \frac{3}{2}$
Equation of DC , $y + 1 = \frac{3}{2}(x - 24)$
 $2y - 3x + 74 = 0$ or $y = \frac{3}{2}x - 37$
(iv)
 $D (6, -28)$
(v)
 $AE = \sqrt{15^2 + 3^2}$
 $= \sqrt{234} \text{ or } 3\sqrt{26} \text{ units}$
Let the perpendicular distance from B to $AE = p$ units.
 $\frac{1}{2} \times p \times \sqrt{234} = 58\frac{1}{2}$
 $p = \frac{2\left(58\frac{1}{2}\right)}{\sqrt{234}}$
 $p = \frac{3\sqrt{26}}{2} \text{ or } 7.65 \text{ units}$
(10 marks)