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 Section A: Pure Mathematics [40 marks]  

1 (a) 

2

Let cot

d
cosec

d

x

x

=

= −






 

( )

2 2

2

2 2

1
 d

1

1
cosec  d

cot 1 cot

x
x x+

=  −
+



  
 

       

 

 
( )2

2 2

2

2

1
cosec  d

cot cosec

sin 1
d

cos sin

=  −

= − 





 
 




 

   

 ( ) 2sin (cos ) d−= −         OR     tan sec d= −      

 1

cos
C= − +


  

  

 
2 1x

C
x

+
= − +   

 

 

 

 

 

   

2 (ai) 

( )

2

1
2

2 2 2

du

du

9 8

4 9

18 8

4 9 2 (3 )

u

u

u

u u
−

−

+

=
+ +





  

 

 

 

 

 

 
2 1

2 1

1 8 3
ln(4 9 ) tan

2 (2)(3) 2

1 4 3
ln(4 9 ) tan

2 3 2

u
u C

u
u C

−

−

  
= + − +  

  

 
= + − + 

 

  

 

 

 

 

 

 
(ii)

3

1
Area required =  dy x   

 

 
( )

1

2
0

9
2 1 d

4 9

u
u u

u
=  +

+   

 

( )

21

2
0

1 1

2
0 0

18 9
= d

4 9

9 8
2 1 d + d

4 9

u u
u

u

u
u u

u

+

+

−
=

+



 
 

 

 

 

 

 1

2 1

0

1 4 3
2 ln(4 9 ) tan      (from part (i))

2 3 2

u
u u −  

= + + −   
  
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1 1

1 2

1 4 3 1 4
= 2 ln13 tan 0 ln 4 tan (0)

2 3 2 2 3

1 13 4 3
2 ln tan units

2 4 3 2

− −

−

    
+ − − + −    

    

 
= + −  

 

  

 

 

 

 

 

 
(b) Given 

2 2( 2) 4( 1) 4x y+ + − =  

     2 2 2( 2) 4[1 ( 1) ] 2 2 1 ( 1)x y x y+ = − −  + =  − −  

The shaded region is bounded by the section of the ellipse where  

x ≤ −2.  Hence 22 2 1 ( 1)x y= − − − − . 

 

 
  

  

 

 

 

Volume of solid formed  

( )

2
2 2

1

2 2
2

1

π4 (2 1)  π  d

16π  π 2 2 1 ( 1)  d

x y

y y

= − −

= − − − − −




 

 

 

 39.6  units (From GC)=    

   

 

3 
(a) 

6 2 4

5 3 2

7 4 3

AB
→

     
     

= − =     
     
     

  and 

5 6 1

6 5 1

10 7 3

BE
→

−     
     

= − =     
     
     

 

Consider 

4 1 3 1

2 1 15 3 5

3 3 6 2

−       
       

 = − = −       
       
       

 

 

 

 

 

 

Then 

( ) ( ) ( )

1 2 1

5 3 5 2 15 5 5

2 4 2

1 5 2 5

x

y

z

x y z

       
       

 − =  − = − + = −       
       
       

 + − + = −

 

Thus equation of surface ABE is 5 2 5x y z− + = −  

 

 

 

 

 

 

(b) 

5 8 13
1 1

6 9 15
2 2

10 6 16

OM
→

      
      

= + =      
            

 

13 4 5
1 1

15 7 1
2 2

16 3 10

DM
→

     
     

= − =     
     
     

 

 

 

 

 

 

 

 

 

− 
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Line DM has equation: 

4 5

7 1 ,

3 10

   
   

= +    
   
   

r     

 (c) Let foot of perpendicular from M to surface be N. 

Thus 

13 1
1

15 5
2

16 2

ON t
→

   
   

= + −   
   
   

 for some t  

 

 

 

 13

2 1
15

5 5 5
2

2
8 2

t

t

t

 
+ 

  
   −  − = −  
    + 

 
 

        

 13 75
25 16 4 5

2 2

1

3

t t t

t

 + − + + + = −

 =

 

 

 

Thus 

13 1

2 3
41

15 1 1
5 35

2 3 6
52

1
8 2

3

ON
→

 
+ 

   
    

= − =        
   

+  
  

 

Thus we have 
41 35 26

, ,
6 6 3

N
 
 
 

. 

 

 

 

 

 

 

 

 

 

 

(d) 

41 13 1
1 1 1

35 15 5
6 2 3

52 16 2

MN
→

     
     

= − = −     
     
     

   

 1 30
1 25 4

3 3
= + + =    

 

(e) Consider 

4 5 9 1

7 8 1

3 10 13 1

+ =    
   

+ =  =   
   + =    

 

 

 

 

Since the value of   is consistent, P lines on the line DM. 

Also, ( ) ( )9 5 8 2 13 5− + = −  

Hence P also lies on the plane ABE. 

Thus P is the point of intersection between the line DM and the plane ABE. 

 

 Let the reflection of point M about the surface ABE be the point M’. 

By ratio theorem (mid-point theorem), 

'

2

OM OM
ON

→ →
→ +

=
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 41 13 43
1 1 1

' 2 35 15 25
3 2 6

52 16 56

OM ON OM
→ → →

     
     

= − = − =     
     
     

  

 43 9 11
1 1

' 25 8 23
6 6

56 13 22

PM
→

     
     

= − = −     
     
     

  

 Thus equation of the reflection of DM about the surface ABE is 

9 11

8 23 ,

13 22

   
   

= +    
   
   

r    

 

   

4 (a)  

 
 

  

 
Height of the cylindrical container 

2 2(2 )a r= − 2 24a r= −  

Volume of cylindrical container V
2 2 24r a r= −  

Need to see that 
2 2(2 )a r− gives the height of the container 

 

 (b) 
2 2 24V r a r= −   

 ( )

( ) ( )

2 2 2

1
2 2 2 2 2 2

d d
4

d d

d 1
2 4 4 2

d 2

V
r a r

r r

V
r a r r a r r

r



 
−

= −

 
= − + − − 

 

 

 

 

 

 

 3
2 2

2 2

d
2 4

d 4

V r
r a r

r a r


= − −

−
 

 

 ( )2 2 3

2 2

2 4d

d 4

r a r rV

r a r

 − −
=

−
 

 

 ( )2 2

2 2

8 3d

d 4

r a rV

r a r

−
=

−


 

 

 
( )

( )

2 2

2

80 4 50

3600

60 0

r

r

r r

= −

=

= 

 

 

2a cm  

r cm  
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 ( ) ( )

( )

2 2

2 2

(60) 8 50 3 60d
6900

d 4 50 60

V

r

 −
 = =

−


   

 

 d d d

d d d

d
100 6900

d

V V r

t r t

r

t

= 

=  

 

 

 1d 1
 cm s

d 69

r

t

−=    

 

(c) 
( )( )

2 2

2 2 3 2 2 3d

d 4

r a r a rV

r a r

+ −
=

−


   

 

( )( )
2 2

d
0

d

2 2 3 2 2 3
0

4

V

r

r a r a r

a r



=

+ −
=

−

 

 

 2 2 2 2
0 (rej 0) or (rej 0) or 

3 3

a a
r r r r r=  = −  =   

 

( )

( )

2 2

2 2

2 2
When 0 < ,

3

2 2 3 d
0  &  2 2 3 0   0.

d4

2 2
When ,

3

2 2 3 d
0  & 2 2 3 0    0.

d4

r a

r a r V
a r

ra r

r a

r a r V
a r

ra r



+
 −   

−



+
 −   

−





 

 

 

 

 

 

 

 

 

 

 

    
2 2

3

a
−

 
  
 

 
2 2

3

a 
  
 

 2 2

3

a
+

 
  
 

 

d

d

V

r
 

  +ve  0  – ve 

Slope  

 

 

  

 

 

 

 

 

 

 

 

 

V is maximum when 
2 2 2 6

33

a a
r = =  

 

 

 

 

 

 

 
When 

2 6

3

a
r = , 

2 2

2

3 3
3

2 6 2 6
4

3 3

16 16 3
 cm

93 3

a a
V a

a a
V



 

   
= −      

   

= =
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 (d)   

 
  

 

   

 Section B: Probability and Statistics [60 marks]  

5 
(i) Required probability 

2

4 3 2 1 2

5 5

+ + +
= =   

 

(ii) Required probability 

7 3 5 2 7 3 5 2

3 1 2 1 3 1 2 1

4 3 4 3

4! 3! 4! 3!

2! 2! 2! 2!2
7 5 7 5

C C C C C C C C
  
  

= + −   
  
  

  

 = 0.50099 

=0.501 (3 s.f)  

   

6 (i) Table of outcomes:  
0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 4 6 

3 0 3 6 9 
 

 

 The probability distribution of T is given by: 

 

T 0 1 2 3 4 6 9 

P(T = t) 7

16
 

1

16
 

2

16

1

8
=

 

2

16

1

8
=

 

1

16
 

2

16

1

8
=

 

1

16
 

 

 

 

 

 

 

 

 

 

 

 (ii)  

( )
7 1 1 1 1 1 1 9

E 0 1 2 3 4 6 9
16 16 8 8 16 8 16 4

T
             

= + + + + + + =             
             
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( )

( ) ( ) ( )

2 2 2 2 2 2 2 2

2
22

7 1 1 1 1 1 1 49
E 0 1 2 3 4 6 9

16 16 8 8 16 8 16 4

49 9 115
Var E E

4 4 16

T

T T T

             
= + + + + + + =             

             

 
= − = − =    

 

   

 ( ) ( ) ( ) ( )

( ) ( )

P 2 P 2 P 2

P 2 P 2

T T T

T T

−  = −  + −  −

=  + +  −

iii      

   
 

 

 

 

                           = ( ) ( )P 7.18095 P 1.81905T T +     

                           = ( ) ( ) ( )P 9 P 0 +P 1T T T= + = =    

 
                         

1 7 1 9

16 16 16 16
= + + =  or 0.5625 

 

 

   

7 (a) Let X be the mass, in grams, of a randomly chosen packet of semolina.  

X ~ 2N(225, 25 )   

 2 24 N(4 225, 4 25 )X     

 ( )24 N 900,  100X  
 

 P(850 4 1050) 0.62466 (5 sf)

                              =0.624  (3 sf)

X  =
  

 

 (b) Let Y be the mass, in grams, of a randomly chosen packet of millet flour. 

Y ~ 2N( ,  )    

 
Let 1 2 3 2 2

5

X X X Y Y
M

+ + + +
=  

 

 2 2675 2 3(25 ) 2( )
N ,  

5 25
M

  + +
 
 

  

 P( 125) P( 265) 0.02M M =  =   

 675 2 125 265

5 2

+ +
 =    

 675 2
195

5

+
 =   

 150 =   

 P( 125) 0.02M  =   

 

2

125 195
P 0.02   where  ~ N(0,1)

1875 2

25

Z Z

 
 

−  =
 +
 
 


  

 

2

70
2.0537

1875 2

25

− = −
+ 

 
 

 21875 2 29042.99478+ =   

 116.55 (5 s.f.) 116 (3 s.f.)= =   
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8 (i) Number of ways =
10

5! 30240
5

 
 = 

 
  

 
(ii) Number of ways

7 3 7 3
5!

5 0 4 1

      
= +      

      
 

      ( )21 1 35 3 5! 15120=  +  =  

 

 

 

 (iii) Number of ways ( )8 1 !2! 10080= − =   

 (iv) Case 1 – Beth in 1 row while Anne and Cathie are in another row 

7
5! 5! 2 1008000

4

 
   = 

 
 

Case 2 – Beth and one of them in 1 row 

7 2 4
3! 2! 5! 2 1209600

3 1 2

     
      =     

     
 

Case 3 – Anne, Beth and Cathie are in the same row 

A and C together A and C separated

7 3 7
2! 2! 2! 5! 2 2! 3! 5! 2 181440

2 2 2

     
      +     =     

     
 

 

 

 

 

 

 

 

 

 

 Thus number of ways = 1008000 1209600 181440 2399040+ + =   

   

9 (a) The probability of a cookie is flawed is constant at p for each cookie. 

OR  

The event that a cookie is flawed is independent of another cookie being flawed.  

 

 

 

 (b)  C ~ B(20, p) 

P(C=0) + P(C=1) = 0.15 

(1−p)20 + p1(1−p)19 = 0.15 

 

 

 

 

 (1−p)19 (1+19p) = 0.15  

 Using G.C, p = 0.15891 = 0.159  

 (c) Let X denote the number of flawed cookies in a box of 20 cookies. 

                       X ~ B(20, 0.08) 

P( 4) P( 3) 0.92938X X =  =   
 

 

 Let Y be the number of rejected boxes out of 10 boxes.  

  Y ~ B(10, 1 0.92938− ) 

                        Y ~ B(10, 0.070615)  

 P(2 5) P( 5) P( 1)Y Y Y  =  −    

 0.15388

0.154 (to 3 sig fig)

=

=
  

 

 (d) Let W be the number of rejected boxes in the first 14 boxes.  

   W ~ B(14, 0.070615) 

Let V be the number of rejected boxes out of 15 boxes. 

  V ~ B(15, 0.070615)  

 Required probability =  P(3rd rejected box is the 15th box | 3)V =   

 

)

0.07 6P( 2 5

( 3

0) 1

P

W

V

= 
=

=
 

 

 0.2=    

   

20

1

 
 
 
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10 (a) Using G.C, 3.075g =    

 84

8

a
u

+
=  

 

 Since ( ),u g lies on the regression line,  
 84

3.075 0.0765 3.99
8

a+ 
= − + 

 
  

 11.686 11.7a =  (correct to 1 decimal place)  

 (bi) and (ii) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (iii) From the scatter diagram, as x increases, y decreases at an increasing rate. 

Hence a linear model is not a suitable model.  

 (iv) Using G.C,  

0.9981Ar = −  

0.8970Br = −   

 

 Since Ar is closer to 1−  than Br , so model (A) is a better model than model (B).  

 From the G.C,  
20.00511019 49.2444y x=− +  

20.00511 49.2y x=− + (3.s.f)  

 (v) When x = 80, 

( )
2

0.00511019 80 49.2444 16.53916y = − + =  

16.5y =  (3.s.f)  

 (vi)  The estimate is unreliable because the data substituted is outside the data 

range (10 70x  ) and so the linear relationship between y and x2 may not hold 

true.  

   

11 (a) Let X denote the length of a randomly chosen green leaf, in centimetres. 

Let L be the total lengths of 100 green leaves. 

1 2 3 100...L X X X X= + + +
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11 

[Turn Over 

 

 Since 100 > 30 (n is considered large), by Central Limit Theorem, 
2N( 12 100 , 3.5 100) approx.L    

 

 P( 1138) 0.96175 0.962 (3 sf )L  =     

 (bi) Unbiased estimate of the population variance 

( )2 264
16.4 273.229 273.23 (2 dp)

63
s = =  (2 decimal places)                              

 

 Let Y denote the time spent in minutes using the one-seater pod facilities by a 

randomly chosen user at location A and  denote the population mean time spent 

in minutes using the one-seater pod facilities at location A. 

 

 To test H0:   = 131  

Against H1:   < 131 (Workspace operator overstating the claim)  
 

 Conduct a one-tail test at 3% level of significance, i.e., α = 0.03  

 Under H0,  

Since 64n=  (> 30) is large, by Central Limit Theorem, 

273.229
~ N 131,

64
Y

 
 
 

approximately. 
 

 127t =     

 Using GC, p-value = 0.026438 0.0264 (3 sf)     

 Since p-value = 0.0264 < 0.03, we reject H0. There is sufficient evidence at 3% 

level of significance to conclude that that the centre manager was overstating his 

claim. 

 

 (ii) There is a probability of 0.03 of concluding that the population average time 

spent using the one-seater pod facilities at location A is less than 131 minutes 

when in fact the population average time spent using the one-seater pod 

facilities in location A is 131 minutes.  

 (iii) Assume that the time spent by the users of the one-seater pods facilities in 

location B follows a Normal Distribution.  

Assume also that the time spent, on the one-seater pod facilities in location B by 

users, are independent of each other. 

 

 

 

 

 Let W denote the time spent in minutes using the one-seater pod facilities by a 

randomly chosen user at location B. 

 

 To test H0:   = 140  

Against H1: 140  

at 5% level of significance 

 

 
Under  H0, 

220.1
~ N 140,

15
W

 
 
 

 
 

 Since H0 is not rejected,  

 140
1.95996 1.95996

20.1

15

w−
−  

 
 
 

 
 

 129.828 150.1718

129.8 150.2    (1 d.p)

w

w

 

 
 

 

   


