LHS = RHS, hence P(1) is true.

Assume P(k) is true for some $k \ge 1$, i.e.

$$\sum_{n=1}^{k} \frac{n+3}{(n+1)(n+2)2^n} = \frac{1}{2} - \frac{1}{(k+2)2^k}.$$

Claim P(k+1) is true, i.e.

$$\sum_{n=1}^{k+1} \frac{n+3}{(n+1)(n+2)2^n} = \frac{1}{2} - \frac{1}{(k+3)2^{k+1}}.$$
Proof:

LHS
$$= \sum_{n=1}^{k+1} \frac{n+3}{(n+1)(n+2)2^n}$$

$$= \sum_{n=1}^{k} \frac{n+3}{(n+1)(n+2)2^n} + \frac{k+4}{(k+2)(k+3)2^{k+1}}$$

$$= \frac{1}{2} - \frac{1}{(k+2)2^k} + \frac{k+4}{(k+2)(k+3)2^{k+1}}$$

$$= \frac{1}{2} - \frac{(k+3)(2) - (k+4)}{(k+2)(k+3)2^{k+1}}$$

$$= \frac{1}{2} - \frac{2k+6-k-4}{(k+2)(k+3)2^{k+1}}$$

$$= \frac{1}{2} - \frac{k+2}{(k+2)(k+3)2^{k+1}}$$

$$= \frac{1}{2} - \frac{1}{(k+3)2^{k+1}}$$

$$= \text{RHS}$$

Hence P(k) is true $\Rightarrow P(k+1)$ is true.

Since P(1) is true, and if P(k) is true then P(k+1) is also true, then by mathematical induction, P(N) is true for all positive integers $N \ge 1$.

$$\sum_{n=1}^{\infty} \frac{n+3}{(n+1)(n+2)2^n} = \lim_{N \to \infty} \frac{1}{2} - \frac{1}{(N+2)2^N} = \frac{1}{2}$$

2(i) The distributive axiom
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
 is violated.

$$c(\mathbf{u} + \mathbf{v}) = c \begin{pmatrix} u_1 v_1 \\ u_2 v_2 \end{pmatrix} = \begin{pmatrix} c u_1 v_1 \\ c u_2 v_2 \end{pmatrix}$$

	$c\mathbf{u} + c\mathbf{v} = \begin{pmatrix} cu_1 \\ cu_2 \end{pmatrix} + \begin{pmatrix} cv_1 \\ cv_2 \end{pmatrix} = \begin{pmatrix} c^2u_1v_1 \\ c^2u_2v_2 \end{pmatrix}$										
	So $c(\mathbf{u} + \mathbf{v}) \neq c\mathbf{u} + c\mathbf{v}$ in general										
	<u>Alternative</u>										
	The axiom $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ is violated.										
	$(c+d)\mathbf{u} = \begin{pmatrix} (c+d)u_1 \\ (c+d)u_2 \end{pmatrix}$										
	$c\mathbf{u} + d\mathbf{u} = \begin{pmatrix} cu_1 \\ cu_2 \end{pmatrix} + \begin{pmatrix} du_1 \\ du_2 \end{pmatrix} = \begin{pmatrix} cdu_1^2 \\ cdu_2^2 \end{pmatrix}$										
	So $(c+d)\mathbf{u} \neq c\mathbf{u} + d\mathbf{u}$ in general										
2(ii)(a)	Let \mathbf{A}_1 and \mathbf{A}_2 be matrices such that $\mathbf{A}_1 \mathbf{B} = \mathbf{B} \mathbf{A}_1$ and										
	$\mathbf{A}_2\mathbf{B} = \mathbf{B}\mathbf{A}_2$										
	$(\mathbf{A}_1 + \mathbf{A}_2)\mathbf{B} = \mathbf{A}_1\mathbf{B} + \mathbf{A}_2\mathbf{B} = \mathbf{B}\mathbf{A}_1 + \mathbf{B}\mathbf{A}_2 = \mathbf{B}(\mathbf{A}_1 + \mathbf{A}_2)$										
	$(k\mathbf{A}_1)\mathbf{B} = k(\mathbf{A}_1\mathbf{B}) = k(\mathbf{B}\mathbf{A}_1) = \mathbf{B}(k\mathbf{A}_1)$										
	The set is closed under addition and scalar										
	multiplication. Also, the set is non-empty since										
	$\mathbf{0B} = \mathbf{B0} = 0$. Hence it is a subspace.										
2(ii)(b)	$\mathbf{I}^{\mathrm{T}}\mathbf{I} = \mathbf{I} \text{ but } (2\mathbf{I})^{\mathrm{T}}(2\mathbf{I}) = 4(\mathbf{I}^{\mathrm{T}}\mathbf{I}) = 4\mathbf{I} \neq \mathbf{I}$										
	The set is not closed under scalar multiplication.										
3(i)	Hence it is not a subspace. $2 - (-2)$										
	$I = \int_{-2}^{2} 3^x dx$ Let $f(x) = 3^x$ and $h = \frac{2 - (-2)}{4} = 1$										
	$ \begin{array}{c cc} n & t_n & y_n = f(t_n) \\ \hline 0 & -2 & 1 \end{array} $										
	0 -2 1										
	1 -1 1										
	$\begin{bmatrix} 1 & -1 & \frac{1}{3} \end{bmatrix}$										
	2 0 1										
	3 1 4 2 9										
	$I = \int_{-2x}^{2} dx $										
	Let T denotes the approximation to $I = \int_{-2}^{2} 3^{x} dx$, found using trapezium rule with 5 ordinates										
	using trapezium rule with 5 ordinates. $T = h_1 = 12 \times 1$										
	$T = \frac{h}{2} [y_0 + 2y_1 + 2y_2 + 2y_3 + y_4] (1)$										
	$T = 8\frac{8}{9}$										
3(ii)	$f(x) = 3^x$										
	$f'(x) = (\ln 3)(3^x)$										
-	,										

	$f''(x) = (\ln 3)^2 (3^x) > 0 \text{ for } -2 \le x \le 2$	
	$f(x) = 3^x$ is concave upwards over the interval $[-2, 2]$	
	Trapezium rule produces an overestimate T to	
	$I = \int_{-2}^{2} 3^x \mathrm{d}x.$	
3(iii)	Let S denotes the approximation to $I = \int_{-2}^{2} 3^x dx$, found	
	using Simpson rule with 5 ordinates.	
	$S = \frac{1}{3}h[y_0 + 4y_1 + 2y_2 + 4y_3 + y_4] (2)$	
	$S = 8\frac{4}{27}$	
3(iv)	$I = \int_{-2}^{2} 3^x \mathrm{d}x$	
	$=\frac{1}{\ln 3} \left[3^x\right]_{-2}^2$	
	$=\frac{1}{\ln 3} \left[3^2 - 3^{-2} \right]$	
	$=\frac{80}{9}\left(\frac{1}{\ln 3}\right)$	
	7 (m3)	
3(v)	Numerical integration using the Simpson rule produces a more accurate approximation compared to the	
	Trapezium rule, with the same number of ordinates.	
	The Simpson rule makes use of a quadratic	
	approximation as opposes to the Trapezium rule which	
	makes use of a linear approximation. Hence Simpson	
2()	rule uses a better approximation to the curve $y = 3^x$.	
3(vi)	Absolute percentage error $ I - S $	
	$=\frac{\left I-S\right }{I}\times100\%\approx0.706\%$	
4(a)	Differentiate (1) with respect to <i>x</i> :	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} - 2\frac{\mathrm{d}z}{\mathrm{d}x} = 0$	
	From (2), $\frac{dz}{dx} = y - 5z + 16x$	
	$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} - 2(y - 5z + 16x) = 0$	
	$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} - 2y + 10z - 32x = 0$	
	From (1), $2z = \frac{dy}{dx} + 4y - 8$	
	$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} - 2y + 5\left(\frac{\mathrm{d}y}{\mathrm{d}x} + 4y - 8\right) - 32x = 0$	

$\Rightarrow \frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 2y + 5\frac{dy}{dx} + 20y - 40 - 32x = 0$ $d^2y \qquad dy$	
$\Rightarrow \frac{d^2y}{dx^2} + 9\frac{dy}{dx} + 18y = 32x + 40 \text{ (shown)}$	
4(b) Auxiliary equation: $m^2 + 9m + 18 = 0$	
$\Rightarrow (m+3)(m+6) = 0$	
$\Rightarrow m = -6 \text{ or } -3$	
Complementary function: $y = Ae^{-6x} + Be^{-3x}$ for arbitrary	
constants A, B	
For particular integral, let $y = cx + d \Rightarrow \frac{dy}{dx} = c$,	
$\frac{d^2y}{dx^2} = 0$	
Substitute into DE: $0+9c+18(cx+d) = 32x+40$	
Comparing coefficients:	
$x: 18c = 32 \implies c = \frac{16}{9}$	
$x^{0}: 9c + 18d = 40 \implies d = \frac{40 - 16}{18} = \frac{4}{3}$	
$\therefore \text{ General solution for } y \text{ is } y = Ae^{-6x} + Be^{-3x} + \frac{16}{9}x + \frac{4}{3}$	
$\frac{dy}{dx} = -6Ae^{-6x} - 3Be^{-3x} + \frac{16}{9}$	
Substitute into (1):	
$-6Ae^{-6x} - 3Be^{-3x} + \frac{16}{9} + 4\left(Ae^{-6x} + Be^{-3x} + \frac{16}{9}x + \frac{4}{3}\right) - 2z = 8$	
$\Rightarrow -2Ae^{-6x} + Be^{-3x} + \frac{64}{9}x - \frac{8}{9} = 2z$	
$\Rightarrow z = -Ae^{-6x} + \frac{B}{2}e^{-3x} + \frac{32}{9}x - \frac{4}{9}$	
Sub. $x = 0$, $y = 0$:	
$A + B + \frac{4}{3} = 0 \implies A + B = -\frac{4}{3}$ (3)	
Sub. $x = 0$, $z = 0$:	
$-A + \frac{B}{2} - \frac{4}{9} = 0 \implies -2A + B = \frac{8}{9} \dots (4)$	
Using GC to solve (3) and (4), $A = -\frac{20}{27}$, $B = -\frac{16}{27}$	
\therefore Solutions for y and z are:	
$y = -\frac{20}{27}e^{-6x} - \frac{16}{27}e^{-3x} + \frac{16}{9}x + \frac{4}{3}$	
$z = \frac{20}{27}e^{-6x} - \frac{8}{27}e^{-3x} + \frac{32}{9}x - \frac{4}{9}$	
5(a) $2v^4 = 1 + \sqrt{3}i$	

	<u></u>	
	$2v^4 = 2e^{i\left(\frac{\pi}{3}\right)}$	
	$v^4 = e^{i\left(\frac{\pi}{3} + 2k\pi\right)}$, where $k \in \mathbb{Z}$	
	$v = e^{i\left[\frac{1}{4}\left(\frac{\pi}{3} + 2k\pi\right)\right]}$	
	$v = e^{i\left(\frac{\pi}{12} + \frac{k\pi}{2}\right)}$	
	For arguments in the principal range, choose $k = 0, \pm 1, -2$	
	$\therefore z = e^{-i\left(\frac{11\pi}{12}\right)}, e^{-i\left(\frac{5\pi}{12}\right)}, e^{i\left(\frac{\pi}{12}\right)}, e^{i\left(\frac{7\pi}{12}\right)}$	
5 (b)	Let $w = e^{ip} = \cos p + i \sin p$ where $p = \frac{\pi}{12}$.	
	By De Moivre's Theorem, for any positive integer n ,	
	$w^n + \frac{1}{w^n} = w^n + w^{-n}$	
	$= \cos np + i\sin np + \cos(-np) + i\sin(-np)$	
	$= \cos np + i\sin np + \cos np - i\sin np$	
	$= 2\cos np$ (shown)	
	$2\cos p = w + \frac{1}{w}$	
	$\Rightarrow \left(2\cos p\right)^4 = \left(w + \frac{1}{w}\right)^4$	
	$\Rightarrow 16\cos^4 p = \left(w^4 + \frac{1}{w^4}\right) + 4\left(w^2 + \frac{1}{w^2}\right) + 6$	
	$=2\cos 4p + 4(2\cos 2p) + 6$	
	$=2\cos\frac{\pi}{3}+8\cos\frac{\pi}{6}+6$	
	$=2\left(\frac{1}{2}\right)+8\left(\frac{\sqrt{3}}{2}\right)+6$	
	$=7+4\sqrt{3}$	
	$\Rightarrow \cos^4 p = \frac{7 + 4\sqrt{3}}{16} \text{ (shown)}$	
5(c)	z = w = 1	
	Locus is a circle centred at the origin O with radius 1	
	unit. $arg(w-z) = \frac{\pi}{3} \implies arg(-(z-w)) = \frac{\pi}{3}$	
	$\Rightarrow \arg(-1) + \arg(z - w) = \frac{\pi}{3}$	
	$\Rightarrow \arg(z - w) = \frac{\pi}{3} - \pi$	
	$\Rightarrow \arg(z - w) = -\frac{2\pi}{3}$	

	=(0.7550, 0.8006)									
	Answer is 4 dp as interval width is 0.0456 to 3 sf									
6(b)	$z_{1-\frac{a}{2}}\sqrt{\frac{P_s(1-P_s)}{n}} = 0.02$									
	$1.645\sqrt{\frac{\frac{7}{9}\left(1-\frac{7}{9}\right)}{n}} = 0.02$									
	$1.645 \frac{\sqrt{\frac{7}{9} \left(1 - \frac{7}{9}\right)}}{\sqrt{n}} = 0.02$									
	$1.645 \frac{\sqrt{\frac{7}{9} \left(1 - \frac{7}{9}\right)}}{0.02} = \sqrt{n}$									
	$n = 1169.27 \approx 1169$									
7	H ₀ : the number of heads obtained follows a Binomial									
	distribution with $p = 0.6$. H ₁ : the number of heads obtained does not follow a									
	Binomial distribution with $p = 0.6$.									
	Zinomia usurounon wan p									
	Level of significance: 5%									
	No of 0 1 2 3 4 heads									
	Frequency 5 35 64 66 30 Expected frequency 5.12 30.72 69.12 69.12 25.92									
	Degree of freedom is 4. $4 (O - F)^2$									
	$\chi^{2} = \sum_{i=0}^{4} \frac{\left(O_{i} - E_{i}\right)^{2}}{E_{i}} \sim \chi^{2}(4)$									
	By GC, the <i>p</i> -value is $0.780 > 0.05$.									
	Hence, we do not reject H ₀ and conclude at 5% significance level that a Binomial distribution with									
	p = 0.6 is a good fit.									
	If the experiment is repeated 1000 times, the new χ^2									
	value will be $1.7614 \times 5 = 8.807 < 9.488$ and so there is									
8(a)	no change to the result of the test. We may not be able to assume that the difference in the									
<i>(u)</i>	depths of tread on the front and rear tyres is normally distributed.									
8(b)	A B C D E F G H									
	2.4 1.5 2.3 2.4 2.6 2.5 2.1 2.6									
	2.3 1.9 2.1 1.8 1.8 2.8 1.4 2.1									

	Diff	-0.1	0.4	-0.2	-0.6	-0.8	0.3	-0.7	T	-0.5
	Rank	-1	4	-2	-6	-8	3	-7		-5
	$H_0: m_d = 0 \ H_1: m_d \neq 0$									
9()	$P=7$, $Q=29$, so $T=P=7$, the 10% two-tail critical region for $n=8$ is $T \le 5$. Therefore, we do not reject H ₀ at 10% significance level and conclude there is insufficient evidence that there is a difference between the average wear for the front and rear tyres.									el a d
8(c)	After co difference For the co that 0.3	ce. change	in co	nclusio	n, $P = T$	′≤5.7	This m	-	1V	e
9(a)	0 < x < 1					0 (110				
	-5 < -5	-								
	-4<1-		1							
	-4 < Y <	< 1								
	$P(Y \le y)$									
	=P(1-3)	$5X^2 \leq$	y)							
	$= P\left(\frac{1-}{5}\right)$			([1)				
	$= P \left(X \right)$									
	$= P\left(X \ge \sqrt{\frac{1-y}{5}}\right) \text{ (since } 0 < x < 1\text{)}$									
	$=\int_{\sqrt{\frac{1-y}{5}}}^{1} dx$									
	$= \left[x^4 \right]_{\sqrt{2}}^{1}$	3								
	$=1-\left(\frac{1}{2}\right)$	/								
	p.d.f of		`2 ┐							
	$=\frac{\mathrm{d}}{\mathrm{d}y}\bigg[1-$	$-\left(\frac{1-5}{5}\right)$	$\frac{y}{z}$							
	$=\frac{2}{25}(1-$									
	$f(y) = \frac{1}{2}$	$\frac{2}{25}(1-$	y),-	4 < y <	1.					

9(b)	$c_1 \sim c_1 \sim c_2 \sim c_1 \sim c_2 $
	$E(Y) = \int_{-4}^{1} \frac{2}{25} (1 - y) y dy = -\frac{7}{3}$
10(i)	Visitors answering the surveys on the website must
	occur randomly and independently of each other.
	The average number of surveys is constant and
	proportional to the length of time.
10(ii)	Let S be the number of surveys received in an hour, i.e.
	$S \sim \text{Po}\left(\frac{5}{6}\right)$.
	$P(S_1 = 0, S_2 = 0 \text{ and } S_3 \ge 1)$
	$= P(S_1 = 0)P(S_2 = 0)P(S_3 \ge 1)$
	$= P(S_1 = 0)P(S_2 = 0)[1 - P(S_3 = 0)]$
	= 0.10679
	$\approx 0.107 (3 \text{ s.f.})$
10(iii)	Let X be the number of surveys received in a day, i.e.
	$X \sim \text{Po}(20)$
	Let W be the total number of surveys received in 2 days,
	i.e. $W \sim Po(40)$.
	Required probability ([Pay 10] [Pay 10] [Pay 17] [Pay 10]
	$2 \left[\frac{P(X=16)}{P(X=14)} + \frac{P(X=17)}{P(X=13)} \right]$
	$= \frac{2 \left([P(X=16)][P(X=14)] + [P(X=17)][P(X=13)] \right)}{P(W=30)}$
	$=\frac{2(0.0060479)}{0.018465}$
	$\begin{vmatrix} 0.018465 \\ = 0.65505 \end{vmatrix}$
	= 0.655 (3s.f.)
10(iv)	
_ (, ,	$f(t) = \frac{1}{72}e^{-\frac{1}{72}t}, t > 0$
10(v)	$P(T > n) \ge 0.3$
	$e^{-\frac{1}{72}n} \ge 0.3$
	$n \le \ln 0.3(-72) = 86.7$
	∴ greatest $n = 86$
11(i)	1-sample t test
11(ii)	By GC, $\bar{x} = 2003.425$ and $s_x^2 = 4.46694^2$
	Let μ_X be the mean mass of rice in a packet in g.
	$H_0: \mu_X = 2000$
	$H_1: \mu_X > 2000$
	$T = \frac{\overline{x} - \mu_x}{s / \sqrt{8}} \sim t_7$
	υ, γυ

	Test statistic $t = \frac{2003.425 - 2000}{4.46694 / \sqrt{8}} = 2.16868$	
	By GC, p -value = 0.0334.	
	Since the null hypothesis is rejected,	
	$\frac{\alpha}{100} \ge 0.0334 \Rightarrow \alpha \ge 3.34.$	
	Thus the minimum value of α is 3.34.	
11(iii)	Appropriate hypothesis test is the 2-sample <i>t</i> test.	
	We need to assume that the variance of the masses of	
	packets of rice of both batches are the same.	
	We have $\bar{y} = 2004.1375$ and	
	$s_Y^2 = \frac{1}{7} \left(266.99 - \frac{33.1^2}{8} \right) = 18.57696.$	
	Let μ_{Y} be the mean mass of rice in a packet in g for the	

second batch. H₀: $\mu_X - \mu_Y = 0$ H₁: $\mu_X - \mu_Y \neq 0$ $s_p^2 = \frac{7s_X^2 + 7s_Y^2}{14}$ $T = \frac{\overline{X} - \overline{Y}}{14} \sim t_{14}$

PV8 8

NORMAL FLOAT AUTO REAL RADIAN MP

2-SampTTest
Inpt:Data Stats

x1:2003.425

x1:2003.425

\$x1:4.46694

n1:8

x2:2004.1375

\$x2:2004.1375

\$x2:4.3100997668267

n2:8

µ1: ≠µ2 ⟨µ2 ⟩µ2

↓Pooled:No Yes

NORMAL FLOAT AUTO REAL RADIAN MP

2-SampTTest

µ1≠µ2
t=-0.324659015
p=0.7502394521
df=14
x1=2003.425
x2=2004.1375
Sx1=4.46694
↓Sx2=4.310099767

By GC, p-value = 0.750 > 0.05.

Hence we do not reject the null hypothesis and conclude that there is no significant difference between the mean

	masses of packets in the two batches.				
11(iv) It could be possible that the second sample of rice					
	consisted of packets that are heavier.				