

HWA CHONG INSTITUTION 2018 C2 H2 CHEMISTRY PRELIMINARY EXAM SUGGESTED SOLUTIONS

Paper 2

- **1 (a)** 1. Thermal stability decreases from H–F to H–I [1]
 - Quote bond energy data:H–F +562 > H–Cl +431 > H–Br +366 > H–I +299 kJ mol⁻¹ and state that this H–X bond is broken during thermal decomposition. [1]
 - (b) (i) It is the heat released when 1 mol of gaseous F⁻ is dissolved in an infinite volume of water (or completely dissolved in water) at 298 K and 1 bar. [1] F⁻(g) → F⁻(aq) [1]

- (c) (i) The hydrogen bond is formed because:
 - 1. there is a H atom bonded to the highly electronegative F atom of one HF molecule [1]
 - 2. and there is a lone pair on the F atom of another HF molecule [1]
 - (ii)

- 1. label δ + δ for the HF molecule that provides the protonic H
- 2. hydrogen bond link $H^{\delta+}$ atom of one HF molecule to lone pair on F atom of the second HF molecule
- 3. label H–F covalent bond 0.092 nm
- 4. label hydrogen bond 0.163 nm
- [1/2] each
- $H \cdot \times \overset{\times \times}{\underset{\times \times}{\overset{\times}{N}}} \cdot \cdot N \overset{\times}{\underset{\times}{\overset{\times}{N}}} N \overset{\times}{\underset{\times}{\overset{\times}{N}}}$
- (e) (i) 1. Reaction between N₂ and H₂ gives fewer number of moles of gases (from 4 mol of gases to 2 mol) or fewer gas molecules [1]

[1]

 Number of ways to distribute particles and/or energy decreases, disorder decreases. Hence entropy decreases [1]

Sum=3.6

1

(ii) $K_{p} = \frac{P_{NH_{3}}^{2}}{P_{N_{2}} \times P_{H_{2}}^{3}}$ [1]

(iii)

	N2(g)	+ 3H ₂ (g) =	2NH₃(g)
initial mol	1	3	0
change	-0.2	-0.2×3	+0.2×2
eqm mol	0.8	2.4	0.4
eqm partial pressure	0.8/3.6 ×20 = 4.44	2.4/3.6 ×20 = 13.33	0.4/3.6 ×20 = 2.22

$$K_p = \frac{(2.22)^2}{4.44(13.33)^3} = 4.69 \times 10^{-4} \text{ MPa}^{-2}$$

[1] for all three equilibrium partial pressures [1] for K_p value (allow ecf from partial pressures) [1] for K_p units Alternative working:

	N ₂ (g)	+ 3H ₂ (g)	4	2NH₃(g)	
initial MPa	x	3 <i>x</i>		0	
change	-0.2 <i>x</i>	-0.6 <i>x</i>		+0.4 <i>x</i>	
eqm MPa	0.8 <i>x</i>	2.4 <i>x</i>		0.4 <i>x</i>	Sum=3.6 <i>x</i>

3.6x = 20 MPa $\Rightarrow x = 5.556$

 $K_p = \frac{(0.4x)^2}{(0.8x)(2.4x)^3} = 4.69 \times 10^{-4} \text{ MPa}^{-2}$

2 (a) Nucleophilic substitution NaOH(aq), heat OR ethanolic KCN, heat OR ethanolic concentrated NH₃, heat (in sealed tube) [1]

> Accept Elimination, ethanolic NaOH, heat Accept (alkaline) Hydrolysis, NaOH(aq), heat

- (b) (i) alcohol, phenol, carboxylic acid (any 2) [1]
 - (ii) The melting point of sodium, 98°C, is relatively low so it can easily be melted to react with the organic compound in the molten form. [1]

The standard reduction potential $E^{\Theta}(Na^{+}/Na) = -2.71 \text{ V}$ is very negative, which shows that sodium is a strong reducing agent / Na can easily be oxidised to Na⁺, so sodium can react with / reduce the organic compound in the fusion reaction. [1]

(c) (i) In the presence of ligands, the partially filled degenerate 3d orbitals of Fe²⁺ split into two different energy levels. The difference in the two energy levels, ΔE , is small, and falls within the visible region of the electromagnetic spectrum. There are vacancies in the higher energy d orbitals. An electron in a lower energy d orbital can absorb radiation in the visible spectrum and be promoted to the higher energy d orbital. This d-d electron transition gives rise to the colour. The violet colour seen is the complement of the absorbed colour which is yellow. [3]

(ii)	Elem
	Perce

Element	Na	Fe	С	Ν	0	S
Percentage by mass	27.1	16.4	17.7	24.7	4.7	9.4
Ar	23.0	55.8	12.0	14.0	16.0	32.1
Molar ratio [1]	1.178	0.294	1.475	1.764	0.294	0.293
Simplest ratio	4	1	5	6	1	1

Compound A: Na₄FeC₅N₆OS [1]

(iii) NOS⁻ [1]

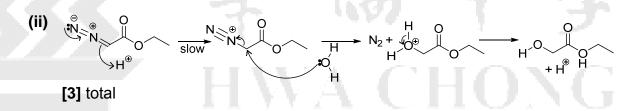
3 (a) (i) Hydrolysis [1]

(ii) No. of moles of N₂ formed = 2.50×10^{-3} mol Max vol. of N₂ gas formed = $2.50 \times 10^{-3} \times 24.0 \times 10^{3}$ = 60 cm³ [1]

[1] for finding and annotating the two half-lives in graph

[1] explanation: from the graph, $\underline{t_{1/2}}$ is constant to about 14.5 min hence reaction is first order with respect to **D**.

(iii) $k = \ln 2 / t_{1/2} = \ln 2 / 14.5 = 0.0478 \text{ min}^{-1}$ [1m ans ; 1m unit]


(b) (

(d)

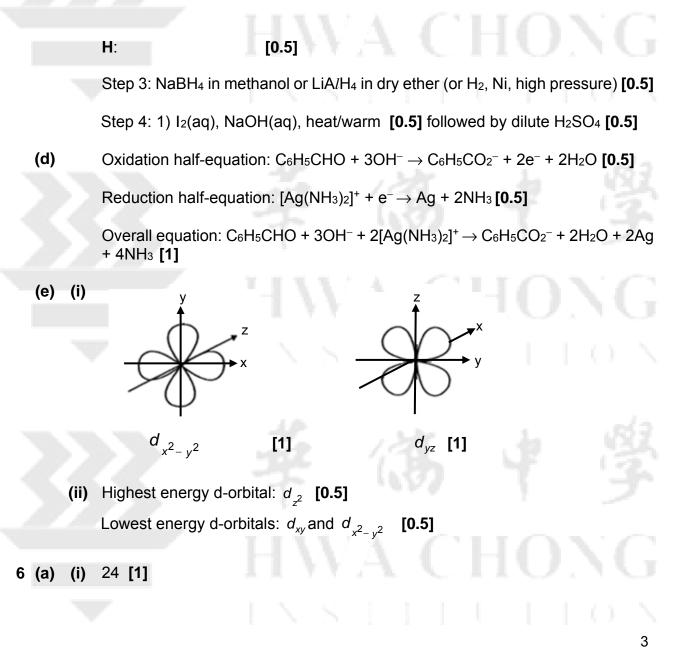
(i)	expt	рН	Rate / mol dm ⁻³ s ⁻¹	[H⁺] / mol dm ⁻³	1
	1	2.0	2.69 × 10 ⁻²	0.0100	
	2	2.3	1.35 × 10 ⁻²	0.00500	
	3	2.4	1.07 × 10 ⁻²	0.00398	

[1]: correct order of H⁺ with justification, e.g. comparing expt 1 and 2, when $[H^+]$ increases by 0.01/0.005 = 2 times, rate increased by $2.69 \times 10^{-2}/1.35 \times 10^{-2} = 2$ times. Reaction is first order with respect to H⁺.

[1] Rate = k [H⁺][D] ecf from order of H⁺

4 (a) (i) pH = 1.27 $[H^+] = 0.0537 \text{ mol } dm^{-3}$ Let $a = [H_2C_2O_4]$ used $K_a = (0.0537)^2 / a - 0.0537$ $a = 0.1027 \text{ mol } dm^{-3}$ [1]

$$\frac{x}{100} \times \frac{1.50}{90.0} \times 1000 = 0.1027$$


x = 0.616% [1] with ecf

(ii) $C_2O_4^{2-} + H_2O = HC_2O_4^{-} + OH^{-}$ [1]

[1] Explanation: C₂O₄²⁻ undergoes hydrolysis to form OH- $[OH^{-}] > [H^{+}]$ indicates pH is more than 7 (b) (i) ligand exchange reaction [1] $[Fe(H_2O)_6]^{3+} + 3 C_2O_4^{2-} \rightarrow [Fe(C_2O_4)_3]^{3-} + 6 H_2O$ [1] $H_2C_2O_4$ formed / neutralization / acid-base reaction when H_2SO_4 is added. (ii) The decrease in [C₂O₄²⁻] causes the position of equilibrium in equilibrium $[Fe(H_2O)_6]^{3+} + 3 C_2O_4^{2-} = [Fe(C_2O_4)_3]^{3-} + 6 H_2O$ to shift to the left .Hence, the presence of $[Fe(H_2O)_6]^{3+}$ gives rise to a pale yellow solution. [1] mention H₂C₂O₄ formed/ neutralization / acid-base reaction occur and decrease in $[C_2O_4^{2-}]$ [1] equilibrium shift left, forming yellow [Fe(H₂O)₆]³⁺ (iii) $Fe^{3+} + e \implies Fe^{2+}$ E^e = +0.77 V $2CO_2 + 2H^+ + 2e \rightleftharpoons H_2C_2O_4$ $E^{e} = -0.49$ $2Fe^{3+} + H_2C_2O_4 \rightarrow 2Fe^{2+} + 2CO_2 + 2H^+$ [1] E^{o}_{cell} = +1.26V > 0 (spontaneous) [1] The Fe³⁺(aq) formed oxidises H₂C₂O₄ to form CO₂ while itself is reduced to green $Fe^{2+}(aq)$ [1]. 5 (a) Electrophilic substitution [1] [2] mechanism $2H_2SO_4 + HNO_3$ $NO_2^+ + H_3O^+ + 2HSO_4^-$ 0 slow H₂SO₄ NO₂ HSÖ₄ NO₂ NO_2 [1] Idea along the lines of "2- or 4- chloro/bromobenzaldehydes can be formed (b) (i) despite -CHO being 3-directing" (ii) • restricted rotation about C=N bond [1] two different groups on C and on N on each end of the C=N double bond [1] (c) (i) Cl <C/ [1] (ii) G, AlCl₃ (or FeCl₃), heat [1]

[0.5]

Step 3: I₂(aq), NaOH(aq), heat/warm **[0.5]** followed by dilute H₂SO₄ **[0.5]** Step 4: NaBH₄ in methanol (or H₂, Ni, high pressure) **[0.5]** OR

H:

- (ii) $\Delta G^{\circ} = -nFE^{\circ}_{cell} = -(24)(96500)(0.85) = -1 968 600 \text{ J mol}^{-1} ≈ -1970 \text{ kJ mol}^{-1}$ [1] allow ecf from (a)(i)
- (iii) $E^{\oplus}_{\text{cell}} = +0.40 E^{\oplus}(CO_3^{2-}/C_6H_{12}O_6) = +0.85$ $E^{\oplus}(CO_3^{2-}/C_6H_{12}O_6) = 0.40 - 0.85 = -0.45 \vee$ [1]
- (iv) $\Delta H^{e} = 6(-670) + 12(-286) [-1270 + 12(-230)] = -3422 \text{ kJ mol}^{-1}$ [1]

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta S^{\circ} = [-3422 - (-1969)]/298 = -4.88 \text{ kJ mol}^{-1} \text{ K}^{-1}$ [1] allow ecf

(b) As concentration of glucose increases, $E(CO_3^{2-}/C_6H_{12}O_6)$ becomes <u>more</u> <u>negative</u> as <u>position of equilibrium</u> for the $CO_3^{2-}/C_6H_{12}O_6$ electrode reaction <u>shifts left</u> to <u>offset the increase in concentration of glucose</u>, this results in the initial increase of E_{cell} . [1]

Beyond an optimum glucose concentration, the <u>active sites</u> on the <u>surface</u> of nickel anode becomes <u>saturated</u> and further increase in glucose concentration will not lead to a decrease in the value of $E(CO_3^{2-}/C_6H_{12}O_6)$. Hence, value of E_{cell} remains constant. [1]

(c) [1] Glucose is a solid or used in aqueous form (liquid) while H₂ is a gas. Hence glucose will occupy a smaller volume for the same mass.

OR There is a risk of explosion for hydrogen gas as it is highly flammable while glucose is not as flammable.

幸信。中学 HWA CHONG

幸 (あ 中 愛 HWA CHONG

HWA CHONG