NJC Preliminary Examination 2024 H2 Physics Paper 2

Solutions and Mark Scheme

1	(a)	Use $v_y = u_y + a_y t$ At max height, $v_y = 0$ $0 = 30 \sin 60^\circ - (9.81) t$		M1
		<i>t</i> = 2	.6 s	A0
	(b)	initia	I velocity = 26 m s ⁻¹ , final velocity = -26 m s ⁻¹	B1
		strai	ght line intersects x-axis at 2.6 s and ends at 5.2 s (or 5.3 s)	B1
	(c)	(i)	horizontal line at $u_x = 15 \text{ m s}^{-1}$ from $t = 0$ to 5.2 s (or 5.3 s)	B1
		(ii)	downward sloping curve from 15 m s ^{-1} and its gradient decreases numerically	B1
			ending before $t = 5.20$ s	B1
	(d)	Calculate displacements of first and second object to be 34.4 m and 5.84 m respectively using 2.6 (or 34.5 m and 5.31 m using 2.65 s)		2.6 s C1
		Disp	lacement between objects = 29 m	A1
2	(a)	a) Force is the <u>rate of change of momentum</u>		B1
	(b)	(i)	Resultant force = change of momentum / time taken = $[0.140 \times (5.5 - (-4.0))]/(0.04)$	M1
			= 33 N	A1
		(ii)	resultant force on ball = $\Delta p / \Delta t$ = 33.25 N	
			Taking forces on the ball, (N is force on ball by bar)	
			33.25 = N - W	M1
			N = 33.25 + 0.14*9.81 = 34.62 N	
			By N3L, force on bar by ball is 35 N.	A0
	(c)	(i)	Taking pivot about support B, clockwise moments = $F_A x (45 - 25)$	C1
			anti clockwise moments = (0.450 x 9.81) (25) + 35 (25 + 50)	C1
			Clockwise moments = anti clockwise moments $F_A = 136.768 \text{ N} = 140 \text{ N}$ (to 2 sf)	A1
		(ii)	net force = 0 Upward force = downward force $F_B = 35 + 140 + 0.450 \times 9.81$	M1
			= 180 N (to 2 sf)	A1

= 530 Pa

(b) weight and upthrust drawn in correct places (weight starts along the central blue dotted line and upthrust from centre of submerged part, ignore lengths) B1

the object <u>turn</u> anticlockwise (rotating ACW and CW with decreasing angle) until the <u>weight and</u> <u>upthrust are on the same line of action (dotted line is vertical)</u> B1

- 4 (a) The gravitational field strength at a point in a gravitational field is defined as the gravitational force exerted per unit mass acting on a small mass placed at that point. B1
 - (b) (i) point X is on the line and closer to Moon

(ii) Gravitational field strength at A = $\frac{G(5.97 \times 10^{24})}{(6.37 \times 10^6)^2} - \frac{G(7.34 \times 10^{22})}{(3.84 \times 10^8 - 6.37 \times 10^6)^2} = 9.81 \text{ m s}^{-2}$

Gravitational field strength at B = $\frac{G(7.34 \times 10^{22})}{(1.74 \times 10^{6})^2} - \frac{G(5.97 \times 10^{24})}{(3.84 \times 10^8 - 1.74 \times 10^6)^2} = 1.61 \text{ m s}^{-2}$

Marks awarded as follow for both calculations:

	 correct equations that include contributions by both Earth and Moon 	M1
	- correct substitutions (e.g. unit conversion, etc)	M1
	- correct final values	A1
(iii)	Shape of graph, one positive one negative, cut x-axis closer to B.	B1

B1

	(ii)	1.0 V	A1
(b)	(i)	0.2 A	A1
		R = 12 Ω	A1
		3. Let the current through R be I. Current through 4-ohm resistor = 3I Since resistors are in parallel: $I \times R = 3I \times 4$	M 1
		Energy = QV = 96 x 1.2 or Energy = $\frac{V^2}{R}t = \frac{1.2^2}{4.0} \times 320$	(M1)
		p.d. V = IR = 0.30 x 4.0 = 1.2 V	(M1)
		OR	
		Energy dissipated = $l^2 Rt = (0.30)^2 (4.0)(320)$ = 115.2 \approx 115 J	M 1
		2. Current through the resistor: $I = \frac{Q}{t} = \frac{96}{320} = 0.30 \text{ A}$	M 1
	(ii)	1. Q = Ne = 1.0 x 10 ⁻³ x 6.02 x 10 ²³ x 1.6 x 10 ⁻¹⁹ = 96.32 \approx 96 C (shown)	A1
		Ratio = 1 : 0.5 : 0.2 or 10 : 5 : 2	A1
(a)	(i)	From $V = IR$, $I = \frac{V}{R}$ hence $I \propto \frac{1}{R}$	C1
		Frequency = 33 Hz	A1
	(iii)	Next higher frequency has 8 segments	C1
	(ii)	$m = \frac{4f^2}{n^2} \left(\frac{\mu}{g}\right) = \frac{4(25)^2}{6^2} \left(\frac{7.0 \times 10^{-3}}{9.81}\right) = 0.050 \text{ kg}$	A1
		$f = \frac{v}{\lambda} = \left(\frac{n}{2L}\right) \sqrt{\frac{mg}{\mu}} = \left(\frac{n}{2}\right) \sqrt{\frac{mg}{\mu}}$ since $L = 1.000$	AC
		From $v = f\lambda$	M1
(b)	(i)	For stationary waves to form, $L = 1.0 = n \left(\frac{\lambda}{2}\right)$ or $\lambda = \frac{2L}{n}$	M 1
	(iv)	Antiphase or π rad / 3.14 rad / 180° out of phase	A1
		One solid line + one dotted line	A1
	(iii)	Two segments / loops	M1
		$= 2.2\pi$ or 6.91 rad or 0.2π or 0.628 rad.	A1
	(ii)	Phase difference = $\left(\frac{0.600}{1.000} \times 2\pi\right) \pm \pi$	M1
(a)	(i)	Length of path $1 = 1.000 - 0.300 = 0.700$ m Length of path $2 = 1.000 + 0.300 = 1.300$ m Path difference = $1.300 - 0.700 = 0.600$ m	B1

(a)	6, 6	5 ohms	A1 A1	
(b)	(i)	Decay constant is the probability of decay per unit time of a nucleus.	B1	
	(ii)	Half-life is the time taken for half the (number of radioactive nuclei/count rate/activity) pres in any given sample of a given isotope to decay at any given time.	<u>ent</u> B2	
(c)	Radi we c	Radioactive decay is a random process, in other words <u>we don't know which nuclei will decay next;</u> we only know the probability of decay.		
	After one half-life, it is not guaranteed that exactly half of the original atoms remain, but that <u>this is</u> just the most likely, and the average outcome.			
Marks awarded as follow: - meaning of random - a reasonable discussion of what that means.			M1 A1	
(d)	(i)	Original ratio = $\frac{C_{14,initial}}{C_{12,initial}} = \frac{1}{3.3 \times 10^{10}}$		
		Over the years, the ratio became $\frac{c_{14,final}}{c_{12,initial}} = \frac{1}{8.6 \times 10^{10}}$ $\frac{N}{N_0} = \frac{C_{14,final}}{C_{14,initial}} = \frac{c_{14,final}}{c_{12,initial}} \times \frac{c_{12,initial}}{c_{14,initial}} = \frac{1}{8.6 \times 10^{10}} \times \frac{3.3 \times 10^{10}}{1}$	C1	

7

= 0.384 A0

Assumption: Ratio of C-12 to C-14 for a fresh sample of wood is constant/ C-12 remains the same $$\rm B1$$

(ii) $N = N_0 e^{-\lambda t}$ $\lambda = \frac{ln2}{5700} = 1.2160 \times 10^{-4} \text{ y}^{-1}$ $0.384 = e^{-1.2160 \times 10^{-4}(t)}$ M1

 $t = 2.49 \times 10^{11} s = 7870 \text{ years}$ A1

(a)	<u>large</u>	er energy gap between conduction band and lower orbitals than standard silicon	M1
	resu	Iting in a larger energy / higher frequency photons	A1
(b)	(i)	wavelength = 595 nm	C1
		energy = $(6.63 \times 10^{-34})(3.00 \times 10^8) / (595 \times 10^{-9}) = 3.343 \times 10^{-19} \text{ J}$	M1
		energy = $3.343 \times 10^{-19} / 1.60 \times 10^{-19} = 2.09 \text{ eV} \text{ or } 2.1 \text{ eV}$	A1
	(ii)	1. insufficient energy for electron to promote / excite to appropriate energy level	B1
		 energy of the photons greater / wider gap between the conduction band and the orbitals than red LED so higher energy per unit charge is required 	e lower B1
(c)	(i)	point correctly plotted	B1
	(ii)	even distribution of points on either side of the line along the full length	B1
	(iii)	correct method to compute gradient i.e. $\Delta y / \Delta x$ and coordinates are read accurate to h smallest square	nalf the M1
		gradient calculated correctly (most line will give a gradient of about -1.7 to -1.8)	A1
(d)	(i)	<i>either</i> obtain lg V_F from graph and $V_F = 10^{\text{value}}$ (e.g. lg (520) = 2.716, lg $V_F = 0.435$) or calculate k from y-intercept and substitute 520 nm into $V_F = k \langle \lambda \rangle^n$	M1
		$V_F \approx 2.7$ V (final answer depends on the line of best fit and rounding in the interm calculations)	nediate A1
	(ii)	p.d. across resistor = $4.5 - V_F$ from (d)(i) resistance = p.d. / 20 mA	M1
		resistance \approx 90 Ω	A1
(e)	(i)	$v = c / n = 3.00 \times 10^8 / 4.24$	M1
		$v = 7.08 \times 10^7 \text{ m s}^{-1}$	A0
	(ii)	$\begin{array}{l} n_1 \sin \sin \theta_1 \ = n_2 \sin \sin \theta_2 \ \Rightarrow 4.24 \sin \sin \theta \ = (1.00) \sin \sin 90^{\circ} \\ \theta = 13.6^{\circ} \end{array}$	C1 A1
	(iii)	coating increase critical angle so more photons emerge / allows photons with larger an the normal of the surface of diode (that are otherwise trap in diode) to emerge	gles to M1
		these photons (with those emerging perpendicularly) are then reflected by plastic bu concentrated in forward direction	ilb and A1

so, more photons released for given energy input

8

(f) ratio =
$$(900 / 9) / (840 / 60)$$
 M1