Why should I learn this?

Understand the basis for genetic diseases

What you have learnt ...

Central Dogma & the Genetic Code

What happens when DNA is altered?

Learning Objectives

• 2(d)

Explain what is meant by the terms gene mutation and chromosomal aberration.

For gene mutation, knowledge of how substitution, addition and deletion could change the amino acid sequence (including frameshift) is required.

2(e)

Explain how gene mutations can result in diseases (including sickle cell anaemia).

Mutation

Definition:

Chromosome

 Change in the sequence, amount or structure of the DNA of an organism.

Mutation

 There are several ways to <u>classify</u> the types of mutations, by:

Cause of mutation Nature of mutation

Type of mutation

Type of mutation

Mutations are passed on to the daughter cells after mitosis, i.e. remains in same organism.

PG 37

A gamete with the mutation passes it on to the new offspring at fertilization

Not in notes

Somatic mutations

Germ-line mutations

PG 37

Mutation

Cause of mutation

Happen naturally. No specific agents are associated.

e.g. errors during DNA replication, recombination or repair

DNA Pol's error rate of 1/100,000,000 bp = ~0.6 to 1 mutation per replication of human genome

Cause of mutation

Happen naturally. No specific agents are associated.

e.g. errors during DNA replication, recombination or repair Result from the influence of extraneous factors.

Induced

e.g. mutagens

Mutagens

Agents that bring about a permanent alteration to the physical composition of DNA/gene, such that the genetic message is changed.

Types of Mutagens

i. <u>Ionizing radiation</u>, such as X-rays, UV

and gamma rays

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

 ii. <u>Chemical substances</u> such as formaldehyde, colchicine*, mustard gas.

Types of Mutagens

PG 37

 iii. <u>Base mutagens</u> – chemicals that are structurally similar to the normal DNA bases BUT <u>base-pair incorrectly</u> during DNA replication

Types of Mutagens

- iv. Other chemical mutagens can also interfere with DNA replication by:
 - <u>inserting</u> themselves into the DNA and <u>distorting the double helix</u>.
 - <u>chemically modifying</u> bases, which changes their base-pairing properties.

Mutation

Nature of mutations

PG 38

Not in Notes

RECAP: What is a gene?

 A specific sequence of <u>nucleotides</u> along a DNA molecule which codes for a specific sequence of <u>amino acids</u> in a polypeptide chain.

While drastic effects of mutations are often emphasized in **diseases** such as cancer, mutations are actually the **source of allele variation** & play a role in **evolution**

1) Chromosomal aberration

- A change in the <u>number or structure</u> of <u>chromosomes</u>
- Several gene loci are involved
- Effect: Change in number of copies of alleles
 / reshuffling of alleles
- Case study : Trisomy 21

CIII) CIIII) CIII) CIII) CIIII) CIIII CIIII) CIIII CIIII) CIIII CIIIII CIIII CIIIII	Constant of the second	24	8	11	T.	Constant of the second of the	
1	2	3		4		5	
6		7(allen allen	(0/11)) (0/11))		16	
6	7	8	9	10	11	12	
26	88		1	6699	6	日日	
13	14	15		16	17	18	
8	8		36	and			
19	20	21	22		x		

2) Gene mutation

- A change in the <u>nucleotide / base</u>
 <u>sequence</u> of a gene
- A single gene locus is involved
- May involve a <u>change in one or more bases</u>

2) Gene mutation

Point Mutation:

- Involves changes in just 1 base pair of the gene
- Can be:

insertion () deletion

subtitution

1) Insertion

- Or called 'Addition'
- One or more nucleotides are <u>added</u> into the sequence

Example:									
Original DNA sequence:	G	Т	Т	А	С	G	А	А	
Mutated DNA sequence:	G	Т	Т	А	A	С	G	А	А

2) Deletion

 One or more nucleotides are <u>removed</u> from the sequence

					1			
Example:					I			
Original DNA sequence:	G	Т	Т	А	E	Т	С	С
Mutated DNA sequence:	G	Т	Т	А	Т	С	С	

3) Substitution

One nucleotide in the sequence is <u>replaced</u> by another nucleotide

4) Inversion

Several nucleotides are inverted (or switch positions) from the sequence

Consolidate (1 min)

Question 1

Will a change in DNA sequence <u>always</u> result in a change in its protein's primary structure?

1) Silent mutations

 Refer to mutations that do <u>not</u> change the amino acid sequence of a protein.

 Reason: The <u>altered</u> codon still codes for the same amino acid due to the degeneracy of the genetic code.

Not in Notes

Genetic Code Table

• By base substitution

PG 5[°]

Not in Notes

Question 2

Will a change in primary structure <u>always</u> result in a change in its protein's functional properties?

2) Neutral mutations

Refers to mutations that alter the normal codon BUT has <u>no effect on the property</u>
 & function of the encoded protein.

• Generally by base substitution.

2) Neutral mutations

- Two possible instances:
 - a) The altered codon encodes for a different amino acid
 BUT this amino acid's R-group has similar chemical properties as that of original amino acid.

Not in Notes

e.g. enzyme

Two possible instances:

- b) The altered codon encodes for a **different amino acid**
 - **BUT** it is found in a region of the protein where the **exact sequence** of amino acids is **NOT essential to the protein's function**.

E.g. enzyme

2) Neutral mutations

Play an important role in **molecular** evolution

3) Missense mutations

The altered codon encodes for a **different amino acid** which has **different chemical properties** \rightarrow changes the properties of the protein

Non-functional *k*

Protein with reduced functional activity

3) Missense mutations

- By base substitution
- e.g. sickle-cell anaemia

To insert into notes

 Can also occur or by insertion or deletion of bases in multiples of three (i.e. one or more codons)

3) Missense mutations

4) Nonsense mutations

- shortened
 Refer to mutations that result in a truncated protein.
- The altered codon encodes for a stop codon stop which results in the premature termination of translation.
- Resulting polypeptide would be **shorter** than the polypeptide encoded by the normal gene and it is usually **non-functional**.
- By base substitution, insertion or deletion.

4) Nonsense mutations

PG

Mutations that cause the triplet reading frame of mRNA to be shifted

By (1 or 2) base insertion or deletion.

Not in notes

5) Frameshift mutations

Reading frame (noun)

The grouping of three successive bases of DNA that constitutes the codons for the amino acids encoded by the DNA.

PG

 As mRNA is read as a series of nucleotide <u>triplets</u> during translation,

 in non-multiples of 3 base pairs
 base insertion or deletion in the gene causes a catastrophic effect as ribosomes now read incorrect triplets on the mRNA from the point of insertion/deletion.

- Effect 1 = The protein specified by the new codons is most likely non-functional
- unless the frameshift is very near the end of the gene.

Effect 2: Frameshifts often create new stop codons, thus generating nonsense mutations, leading to premature termination of translation.

Adapted from Campbell NA (ed). Biology, 2nd ed, 1990.

Effects of deleting/inserting **3** consecutive nucleotides are not as severe because only one or two amino acid is removed/added.

Not in Notes

Consolidate

New protein encoded by mutated gene [CLUE]	Gene Mutation (Effect on polypeptide)
A) A very very different protein	Frameshift
B) A truncated protein	Nonsense
C) Non - / less functional protein	Missense
D) Protein with different primary structure, but same function	Neutral
E) Exactly the same protein	Silent

Summary

Explain what is meant by the terms gene mutation and chromosomal aberration. For gene mutation, knowledge of how substitution,

addition and deletion could change the amino acid sequence (including frameshift) is required.

2(m) <u>Explain</u> how gene mutations can result in diseases (including sickle cell anaemia).

Case study: Genetic Disease

PG

Base substitution & Missense mutation

Case study : sickle cell anaemia

- A homozygous recessive disorder
- 2 copies of the defective allele needed for manifestation of the disease

RECAP - haemoglobin

Case study : sickle cell anaemia

- The major form of haemoglobin (HbA) has a <u>quaternary</u> structure
- contains 2 identical α -chains + 2 identical β -chains.
- The α and β -chains are encoded by two different genes found on two different chromosomes.
 - $-\alpha$ chain : 141 a.a. (Chr 16)
 - $-\beta$ chain : 146 a.a. (Chr 11)

Case study : sickle cell anaemia

- Sickle-cell anaemia patients have altered haemoglobin known as haemoglobin S, HbS
- α chains of HbA & HbS are identical but for
- the gene coding for β chain in HbS, a single base substitution occurred

Gene coding for β chain

Case study : sickle cell anaemia

Glutamic acid (Glu or E)

> Acidic, hydrophilic

Case study : sickle cell anaemia

Tertiary structure of haemoglobin changes as the **R groups** of valine **form different interactions** with other amino acids

Case study : sickle cell anaemia

At low oxygen concentrations

solubility of deoxygenated HbS decreases

HbS molecules stick to each other via their (hydrophobic regions [valine]

Polymerization of HbS into long fibres inside RBCs

Not in notes

NORMAL HEMOGLOBIN

CLUMPED HEMOGLOBIN

HbA

Polymerisation of HbS https://www.youtube.com/watch?v=-1_qkwQkB_c

Case study : sickle cell anaemia

Long fibres of abnormal haemoglobin deform red blood cells into <u>sickle shape</u>

<u>Normal O₂ concentration</u> Circular, biconcave shape red blood cells

Low O₂ concentration Sickle-shaped red blood cells

Case study : sickle cell anaemia

 Consequence 1: Sickle-shaped red blood cells are <u>ineffective</u> in transporting

oxygen

Case study : sickle cell anaemia

- Consequence 2: Due to their shape, sickledshaped red blood cells <u>clump</u> to one another and <u>clog</u> small capillaries;
- Obstructing blood flow -> symptoms such as physical weakness, pain or <u>organ damage</u>

Consequences of sickle cell anaemia

- Consequence 3: Sickle-shaped RBCs have a <u>shorter lifespan</u> and <u>haemolyse</u> readily,
- => resulting in anaemia

Not in Notes

Olabeland and bland and

Comparison Table

Features	Normal condition	Sickle-cell anaemia
Gene coding for β -globin chain	T	A
Resultant codon on mRNA	GAA	GUA
Resultant amino acid residue	Glutamic acid	Valine
Resultant haemoglobin	Haemoglobin A	Haemoglobin S
Solubility of haemoglobin	Soluble	Less soluble
At low oxygen concentration	Remains soluble	Forms rigid fibres
Appearance of red blood cell	Circular biconcave shape	Sickle shape
	300	

Summary

Explain what is meant by the terms **gene mutation** and chromosomal aberration.

For gene mutation, knowledge of how substitution, addition and deletion could change the amino acid sequence (including frameshift) is required.

For chromosomal abert from knowledge of numerical aberration (including aneuploidy, as in the case of trisomy 21, i.e. Down syndrome) or functural aberration (including translocation, duplication, inversion and deletion) is required.

Explain how gene mutations can result in diseases (including sickle cell anaemia).

2(m