Answer all the questions in the spaces provided.

1	(a)
1	(a)

Initial burette reading/ cm ³	0.00	0.00	
Final burette reading/ cm ³	22.00	21.90	
Volume of FA 1 used/ cm ³	22.00	21.90	

(b) volume of **FA 1** used = $\frac{1}{2}$ (22.00 + 21.90)

- (c) (i) No. of moles of $KMnO_4 = 21.95/1000 \times 0.0300$
 - = <u>6.59 x 10⁻⁴ mol</u>
 - (ii) No. of moles of $H_2O_2 = 5/2 \times 6.59 \times 10^{-4}$
 - = <u>1.65 x 10⁻³ mol</u>

Concentration of H_2O_2 in **FA 4** = 1.65 x 10⁻³ / 0.025

- = <u>0.0659 mol dm⁻³</u>
- (iii) Concentration of H₂O₂ in **FA 2** = 0.0659 x $\frac{250}{25}$
 - = <u>0.659 mol dm⁻³</u>
- (iv) Volume of $O_2 = 0.659 \times \frac{1}{2} \times 24 = 7.90$
 - Volume strength = 7.90

OR

• Volume strength = 1.02 x ¹/₂ x 24 = <u>12.2</u>

[Total: 10]

2 (b) Table of results

Expt	V _{FA 4} / cm ³	Volume of water/	t/ s	1/ t /s⁻¹	log(1/t)	log(V _{FA 4})
		cm ³				
1	20.0	0.0	23.8	0.0420	-1.38	1.30
2	10.0	10.0	48.0	0.0208	-1.68	1.00
3	13.0	7.0	37.0	0.0270	-1.57	1.11
4	17.0	3.0	27.9	0.0358	-1.45	1.23

[4]

[4]

(c) (i) log(1/t) --1.30 -1.35 -1.40 -1.45 -1.50 -1.55 -1.60 -1.65

68

[3]

(ii) Gradient = $\frac{-1.40+1.68}{1.28-1.0}$ = 1.00 (iii) log V_{FA 4} = log 16.50 = 1.22 From graph, log (1/t) = -1.46 t = 28.8 s (d) Number of moles of S₂O₃²⁻ used = 0.025 x 10.0/1000 = 2.50 x 10⁻⁵ mol Total volume of reacting mixture = 51.0 cm³ [S₂O₃²⁻]_{initial} = (2.50 x 10⁻⁵) / (51.0 x 10⁻³) = 4.90 x 10⁻³ mol dm⁻³ [S₂O₃²⁻]_{final} = 0 Rate of change of [S₂O₃²⁻] = (4.90 x 10⁻³ - 0)/ 23.8

[3]

(e) (i) Higher conc. of thiosulfate means <u>greater reaction time</u> (allow reaction will be slower) and so a <u>smaller percentage error</u>.

= 2.10 x10⁻⁴ mol dm⁻³ s⁻¹

[1]

 (ii) Reason: <u>change of temperature</u> Use thermostatically-controlled <u>water bath</u> to maintain constant temperature Reason: <u>decomposition</u> of hydrogen peroxide Store H₂O₂(aq) at low temperature, make up fresh H₂O₂(aq), keep H₂O₂(aq) in dark/dim light

[2]

(f) Increase number of experiments carried out and hence data points plotted. OR
Have a greater spread of data points, e.g. V_{FA4} less than 10cm³

[1]

(g) For Experiment 1 and 2, <u>same amount of H₂O₂ will be reacted</u> with as the same fixed amount of S₂O₃²⁻ is added into each reacting mixture. Since <u>experiment 2 has the lower initial amount or conc of H₂O₂ added, it will have the <u>larger percentage drop/ decrease in concentration of H₂O₂. Hence, <u>experiment 2</u> shows a greater difference than experiment 1. [1]
</u></u>

[Total: 18]

3	(a)		Test	Observation
		(i)	To a 1 cm depth of FA 7 in a test- tube, add aqueous sodium hydroxide until it is in excess. Warm the tube, gently and carefully. Then, add a 1 cm depth of FA 2 .	 green ppt, insoluble in excess, ppt turns brown on standing on warming, NH₃ gas evolves, turns moist red litmus blue Brown ppt.
				Effervescence. Gas evolved relights glowing splint.

(ii)	Place about 2 cm ³ of FA 7 in a test- tube.	 Effervescence Gas evolved causes lighted splint to 'pop'
	Add 3-4 pieces of magnesium ribbon.	Green ppt formed
	Leave it on test tube rack for 5 minutes.	 Brown/black deposit on Mg ribbon OR brown/black ppt

- (b) (i) FA 7: cations are are \underline{NH}_4^+ and \underline{Fe}^{2+}
 - $\begin{array}{ll} \mbox{(ii)} & Green \mbox{ ppt is Fe}(OH)_2 \mbox{ which darkens/ turns brown as it is oxidised to Fe}(OH)_3. \\ & OH^- \mbox{ is produced from the reaction between Mg and H_2O. } \\ & Mg \mbox{ is more reactive than Fe, so Fe is coated on Mg} \\ & Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2 \\ & Fe^{2+} + 2OH^- \rightarrow Fe(OH)_2 \\ & 2Fe(OH)_2 + [O] + H_2O \rightarrow 2Fe(OH)_3 \\ & Fe^{2+} + Mg \rightarrow Fe + Mg^{2+} \end{array}$

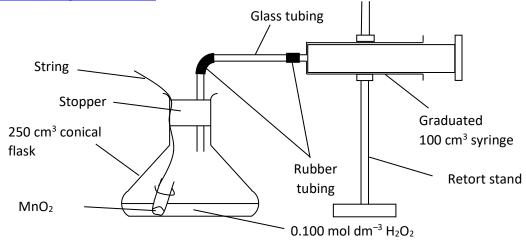
(c)		Test	Observation
	(i)	To a 1 cm depth of FA 8 in a test- tube, add a 1 cm depth of FA 5 and leave it on test tube rack for 1-2 minutes, then	Solution turns brown/yellow brown or black ppt
		add FA 6 .	Solution turns blue
	(ii)	Transfer about 5 cm ³ of FA 8 into a boiling tube. Add all the sample of zinc powder provided to the solution.	Effervescence, gas evolved pops with lighted splint
		Stir the mixture. Record all the observations. When no further changes are seen, filter the reaction mixture into a test tube. This is solution FA 9 .	Solution turns yellow \rightarrow green \rightarrow blue \rightarrow green \rightarrow violet Violet filtrate (can award mark for the 3 rd colour here if violet is not mentioned above)
	(iii)	To a 1 cm depth of FA 9 in a test- tube, add 2 cm of H_2SO_4 followed by FA 1 dropwise until in excess.	Solution turns violet/final colour given in (a)(ii) →green →blue→ green →yellow(orange) → pink/purple
		Record all the observations.	
		When FA 1 is in excess, the solution will be pink.	
	(iv)	To a 1 cm depth of FA 9 in a test- tube, add a 1 cm depth of FA 8 .	Solution turns blue/green

(d) **FA 9** undergoes <u>oxidation</u>. MnO₄⁻ is an oxidising agent/is reduced/changes from purple to colourless

5

[1]

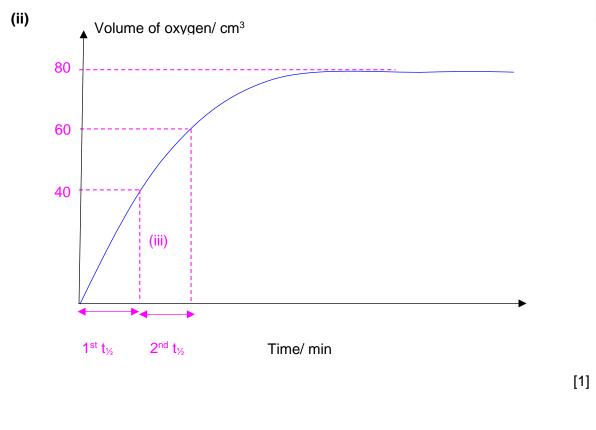
[Total:14]


4 (a) Add an excess of aqueous Na₂CO₃ to precipitate MnCO₃. Filter the mixture to separate the precipitate from the solution using a pre-weighed filter paper.

Wash the precipitate to remove any impurities. Dry the precipitate together with the filter paper by heating in an oven to remove the water.

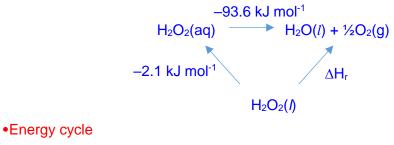
[2]

(b) (i) $\frac{\text{Pre-calculations}}{\text{Assume O}_2 \text{ gas collected in a } 100 \text{ cm}^3 \text{ gas syringe to be } 80 \text{ cm}^3.$ No of moles of O₂ gas in 80 cm³ = 80 / 24000 = 3.33 x 10⁻³ mol No of moles of H₂O₂ required = 2(3.33 x 10⁻³) = 6.67 x 10⁻³ mol • Vol of H₂O₂ required = 6.67 x 10⁻³ / 0.1 = 66.7 cm³


Set-up for gas collection

Experimental Procedure

- 1. Using a 50 cm³ measuring cylinder, measure approximately 70 cm³ (or any other vol in excess) of H_2O_2 and transfer it to a conical flask.
- 2. Assemble the set-up as shown in the diagram.
- 3. Note the initial volume reading of a 100 cm³ gas syringe before removing the string to start the reaction. Start stopwatch immediately.
- 4. Record volume of gas produced at 30-second interval (or any logical time intervals)
- 5. Record the final volume reading of the gas syringe approx 20 minutes after the reaction has completed and there is no movement observed of the plunger in the syringe (to allow the temperature and pressure to equilibrate with the surroundings).


[6]

(iii) Determine two t ½ values from the graph.
If both t ½ is a constant, order of reaction wrt [H₂O₂] is 1st order.

[2]

By Hess' Law,

• $\Delta H_r = -2.1 + (-93.6) = -95.7 \text{ kJ mol}^{-1}$

[2] [Total: 13]