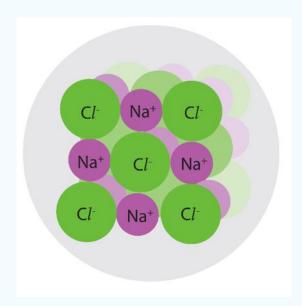

CHAPTER 9 SALTS


Chapter 9 Salts

- 9.1 What Are Salts?
- 9.2 How Are Salts Prepared?

Learning Outcome(s)
Describe the general rules of solubility for common salts in water.

• A salt is an ionic compound that consists of a cation (positive ion) and an anion (negative ion).

Solubility of Salts in Water

- Solubility refers to the ability of a solute to dissolve in a solvent.
- Different salts have different solubilities. Salts may be soluble or insoluble.
- The solubility of a salt must be determined before we decide on a method to prepare the salt.

Textbook Page 166

9.1 What Are Salts?

Solubility of Salts in Water

Soluble Salts

all sodium salts all potassium salts all ammonium salts all nitrates actually, it's all Group 1 salts!

SPA(N)

all chlorides

except

all sulfates

except

sodium carbonate, Na₂CO₃ potassium carbonate, K₂CO₃ ammonium carbonate, (NH₄)₂CO₃

except

Insoluble Salts

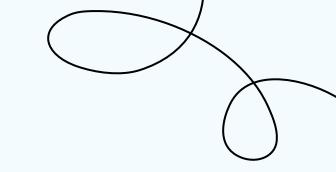
_

silver chloride, AgC/ lead(II) chloride, PbC/₂

SLC

barium sulfate, BaSO₄ lead(II) sulfate, PbSO₄ calcium sulfate, CaSO₄ (sparingly soluble)

Bio Phy Chem


all carbonates

Solubility of Salts in Water

Soluble base	Insoluble base
sodium hydroxide, NaOH potassium hydroxide, KOH calcium hydroxide, Ca(OH) ₂ *ammonium hydroxide (SPA salts)	all hydroxides
sodium oxide, Na ₂ O potassium oxide, K ₂ O calcium oxide, CaO	all oxides

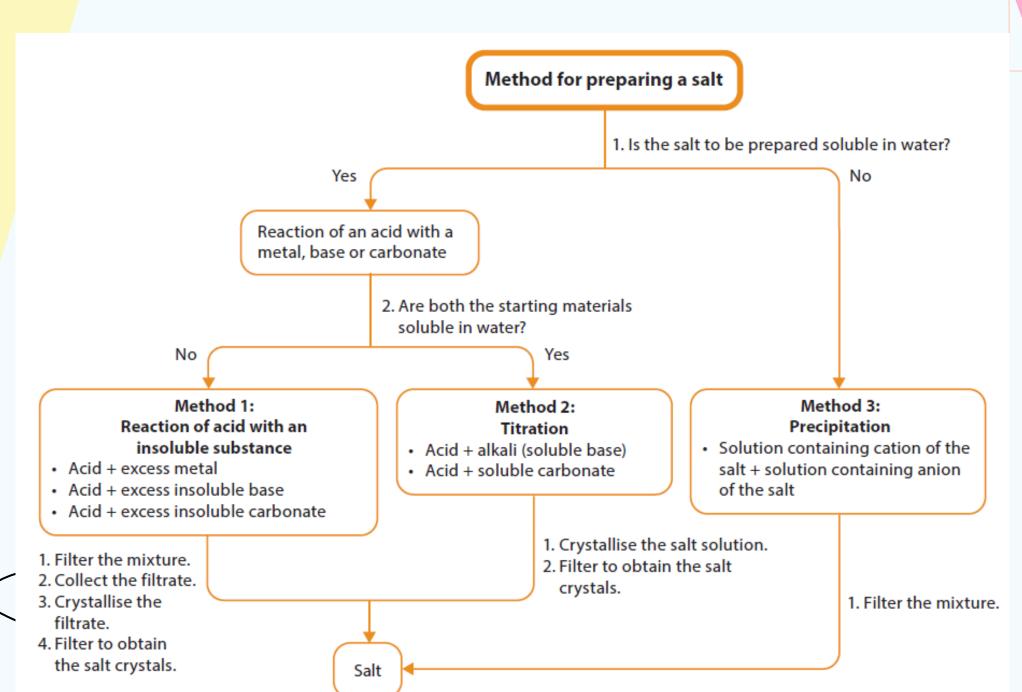
Applications of Solubility Rules

Summary of Lesson

- Salts are **ionic** compounds.
- · Not all salts are soluble in water.
- The **solubility** of a salt must be determined before we can choose a suitable method to prepare the salt.

Chapter 9 Salts

- 9.1 What Are Salts?
- 9.2 How Are Salts Prepared?


9.2 How Are Salts Prepared?

Learning Outcome(s)

- Describe the techniques used in the preparation, separation and purification of salts.
- Suggest a method of preparing a salt from suitable starting materials.

9.2 How Are Salts Prepared?

- There are several ways to prepare salts.
- Before deciding on how to prepare a salt, two factors must be considered:
 - The solubility of the salt in water
 - The solubility of the starting materials in water
- If a salt is soluble in water → prepared by reactions of acids
- If a salt is **insoluble** in water \rightarrow prepared by **precipitation**

- This method is used to prepare salts that are soluble in water.
- However, this is <u>NOT</u> used to prepare <u>SPA</u> (<u>Sodium</u>, <u>Potassium</u> and <u>Ammonium</u>) salts.
- General equations for this method:
 - o acid + excess metal(s) → salt + hydrogen
 - acid + excess insoluble base(s) → salt + water
 - \circ acid + excess insoluble carbonate(s) \rightarrow salt + water + carbon dioxide
- The excess starting materials are removed by filtration.

- General equations for this method:
 - o acid + excess metal(s) → salt + hydrogen
 - o acid + excess insoluble base(s) → salt + water
 - \circ acid + excess insoluble carbonate(s) \rightarrow salt + water + carbon dioxide

Note!

The metal, base or carbonate must be added in excess so that all the acid is used up. This prevents the salt formed from being contaminated by the remaining acid.

• The excess starting materials are removed by filtration.

Step 1	Determine if the
	salt is soluble in
	water.

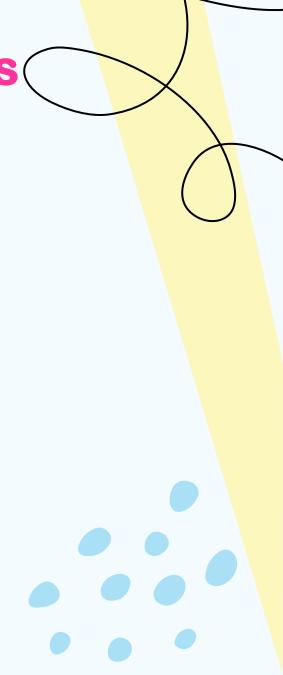
Zinc sulfate is soluble in water.

Step 2 Identify the starting materials.

Zn²⁺ can come ZnO or ZnCO₃.

from either Zn,
ZnO or ZnCO

- Possible starting materials: Sulfuric acid with zinc metal, zinc oxide or zinc carbonate
- Consider the <u>reactivity of the metal</u> when choosing starting materials.

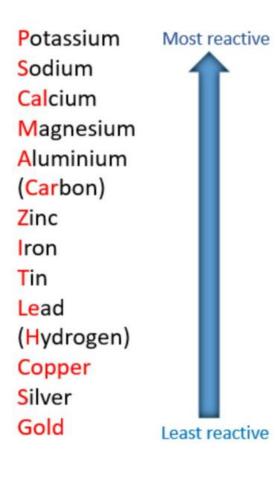

How to remember the Reactivity Series(

Please Stop **Calling** Me Careless Zebra Huh Instead Try Learning **How** Cupid Shoots Gold

Potassium Most reactive Sodium Calcium Magnesium **Al**uminium Carbon Zinc **Hydrogen** ron Tin Lead **Hydrogen ion** Copper Silver

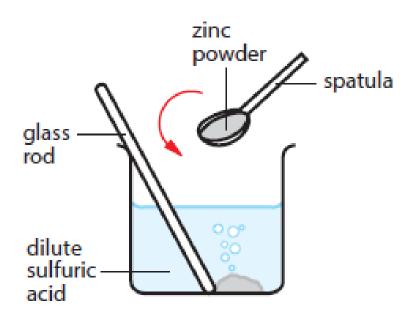
Least reactive

Gold

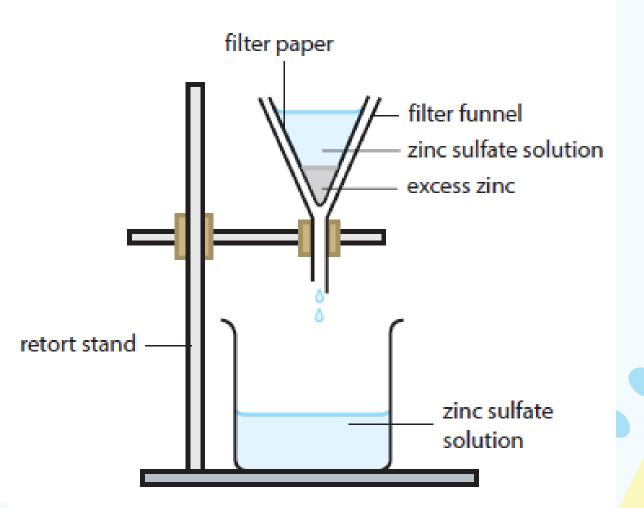


Textbook Page 264

 Metals above hydrogen in the reactivity series react with hydrochloric acid.


Table 15.2 Reactions of some metals with dilute hydrochloric acid

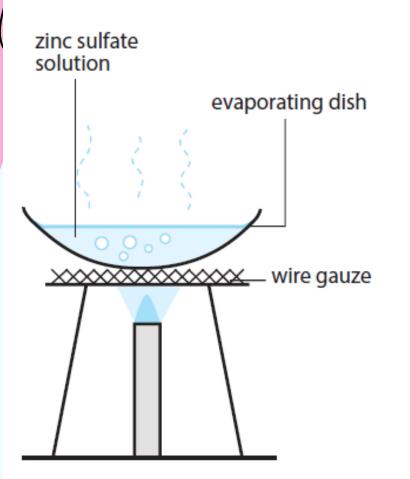
Metal	Observation and Equation for Reaction with Dilute Hydrochloric Acid	Equation
potassium	React explosively. These reactions should not	2K(s) + 2HC/(aq) → 2KC/(aq) + H ₂ (g)
sodium	be carried out in the school laboratory.	2Na(s) + 2HC/(aq) → 2NaC/(aq) + H ₂ (g)
calcium	Reacts violently to give hydrogen gas.	$Ca(s) + 2HCl(aq) \longrightarrow CaCl_2(aq) + H_2(g)$
magnesium	Reacts rapidly to give hydrogen gas.	$Mg(s) + 2HCl(aq) \longrightarrow MgCl_2(aq) + H_2(g)$
zinc	Reacts moderately fast to give hydrogen gas.	$Zn(s) + 2HCl(aq) \longrightarrow ZnCl_2(aq) + H_2(g)$
iron	Reacts slowly to give hydrogen gas.	$Fe(s) + 2HCl(aq) \longrightarrow FeCl_2(aq) + H_2(g)$
*lead copper silver	No reaction occurs.	

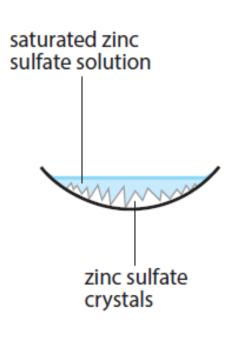


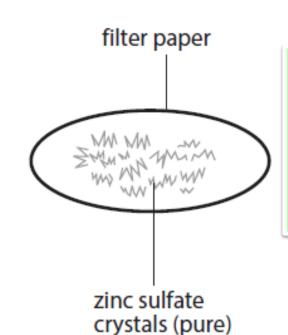
	Step 3	Determine if the starting materials are soluble in water.	 Zinc sulfate is soluble in water. Zinc metal, zinc oxide and zinc carbonate are insoluble in water. Method 1 can be used.
	Step 4	Select the starting	Sulfuric acid with zinc metal:
		materials.	dilute sulfuric acid + zinc → zinc sulfate + hydrogen
>			

Till half a beaker with dilute sulfuric acid. With constant stirring, add zinc powder until no more zinc will dissolve in the acid or no more effervescence is observed.

2 Filter to remove the excess (unreacted) zinc powder. Collect the filtrate. This is the zinc sulfate solution.

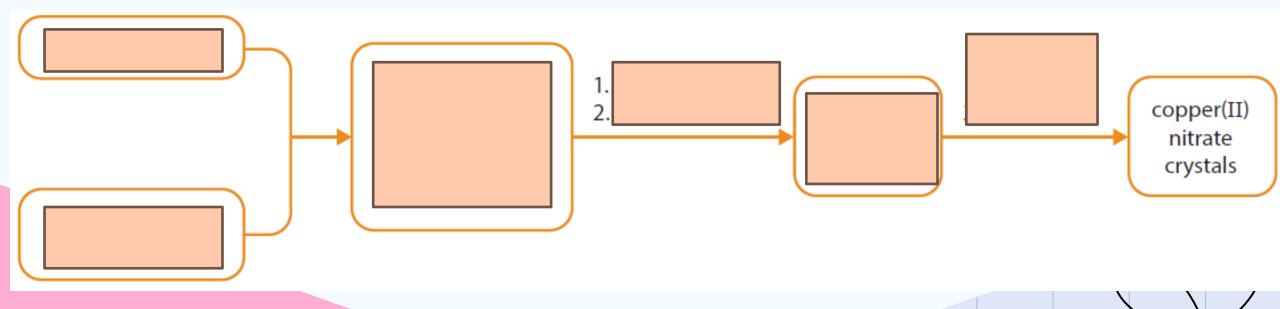


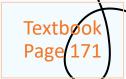

Textbook Page 170

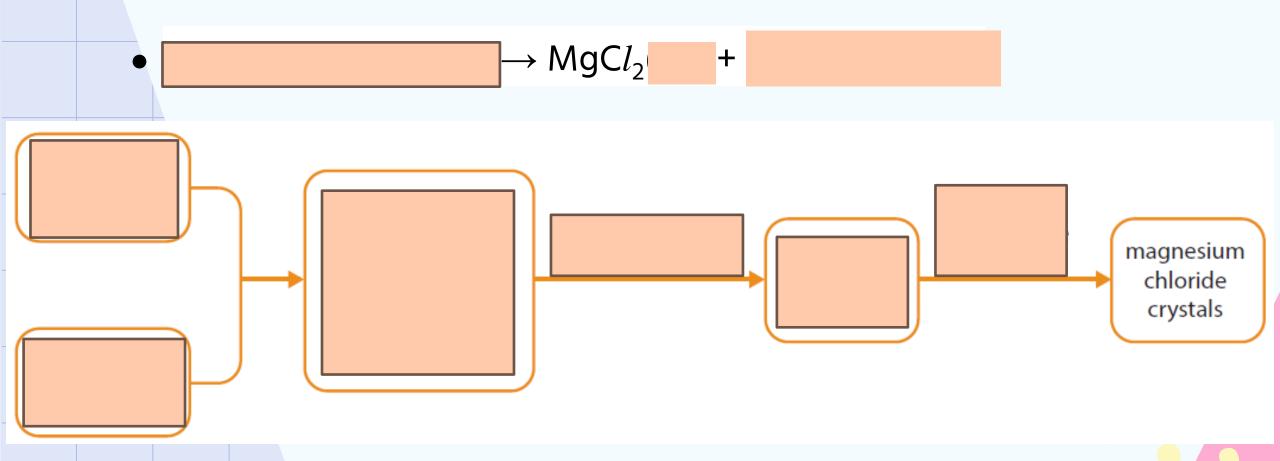

3 Heat the filtrate until it is saturated.

4 Allow the saturated solution 5 to cool so that the salt can crystallise.

Filter to collect the crystals. Then, wash the crystals with a little cold distilled water to remove impurities. Dry the crystals between a few sheets of filter paper.



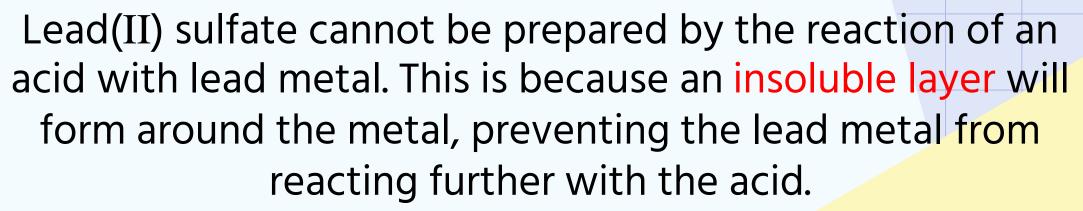

Note!
The method is not suitable for very reactive or unreactive metals.


Preparation of Copper(II) Nitrate

9.2 How Are Salts Prepared?

Method 1: Reaction of Acid With an Insoluble Substance Preparation of Magnesium Chloride

Textbook Page 174

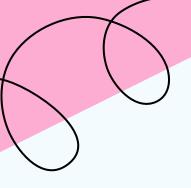


Lead(II) sulfate cannot be prepared using the reaction between lead metal with a solution of dilute sulfuric acid.

Suggest why this is so.

$$Pb(s) + H_2SO_4(aq) \rightarrow PbSO_4(s) + H_2(g)$$

Textbook Page 174


$$Pb(s) + H_2SO_4(aq) \rightarrow PbSO_4(s) + H_2(g)$$

What other salts cannot similarly be formed by reacting a metal with sulfuric acid??

Calcium and barium metals (chem, bio, phy)

Method 2: Titration

- This method is used to prepare "SPA" [sodium, potassium (Group 1) and ammonium] salts.
- General equations for this method:
 - o acid + alkali (soluble base) → SPA salt + water
 - o acid + soluble carbonate → SPA salt + water + carbon dioxide
- In titration, both reactants are soluble. **Exact volumes** of the starting materials must be used to get the pure salt.

Method 2: TitrationPreparation of Sodium Nitrate

Step 1 Determine if the salt is soluble in water.

Sodium nitrate is soluble in water.

Na⁺ can come from Na, NaOH or Na₂CO₃.

NaOH or Na₂CO₃.

No₃⁻ comes from HNO₃.

Step 2 Identify the starting materials.

- Possible starting materials: Nitric acid and sodium hydroxide or sodium carbonate
- Sodium metal is highly reactive and should not be used.

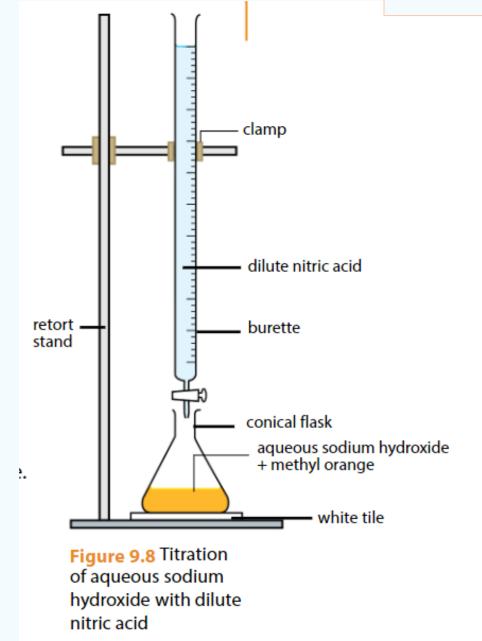
Method 2: TitrationPreparation of Sodium Nitrate

Step 3 Determine if the starting materials are

soluble in water.

- Sodium nitrate, nitric acid, sodium hydroxide and sodium carbonate are soluble in water.
- Method 2 can be used.

Step 4


Select the starting materials.

 Dilute nitric acid with aqueous sodium hydroxide:

dilute nitric acid + aqueous sodium hydroxide → sodium nitrate + water

Method 2: Titration

- 1. Titrate the acid with the alkali, with a suitable indicator, to determine the exact volumes of the two solutions.
- 2. Repeat the titration, without the indicator, to form the required salt.
- 3. Heat the solution until it is saturated.
- 4. Leave the solution to cool for crystallisation to occur.
- 5. Filter and wash the crystals with a little cold water.
- 6. Dry crystal with filter paper.

Method 3: Precipitation

- This method is used to prepare an insoluble salt by mixing two solutions.
- General equation:
 aqueous solution AB + aqueous solution XY → insoluble salt AY + aqueous solution XB
 - Solution AB contains the cation
 - Solution XY contains the anion
- The salt can be separated from the starting materials by filtration.

Method 3: Precipitation Preparation of Barium Sulfate

Select the starting

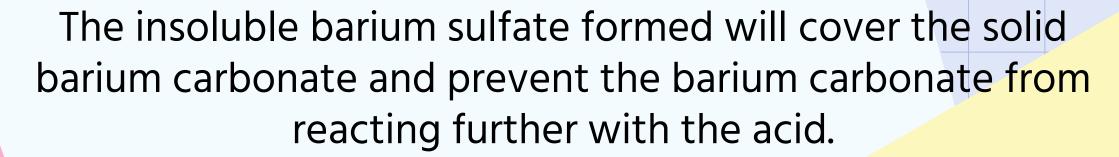
materials.

Step 3

Step 1	Determine if the salt is soluble in water.	Barium sulfate is insoluble in water.		
		$\frac{Ba^{2^{+}} can come}{from Ba(NO_3)_2} - \frac{BaSO}{4} - \frac{SO_4^{2^{-}} can come}{from H_2 SO_4 or any}{soluble sulfate}.$		
Step 2	Identify the suitable method and starting materials.	 Method 3 can be used. Possible starting materials: Barium nitrate and sulfuric acid or another soluble sulfate 		
		barium nitrate + sodium sulfate → barium sulfate + sodium nitrate		

Barium nitrate and aqueous sodium sulfate

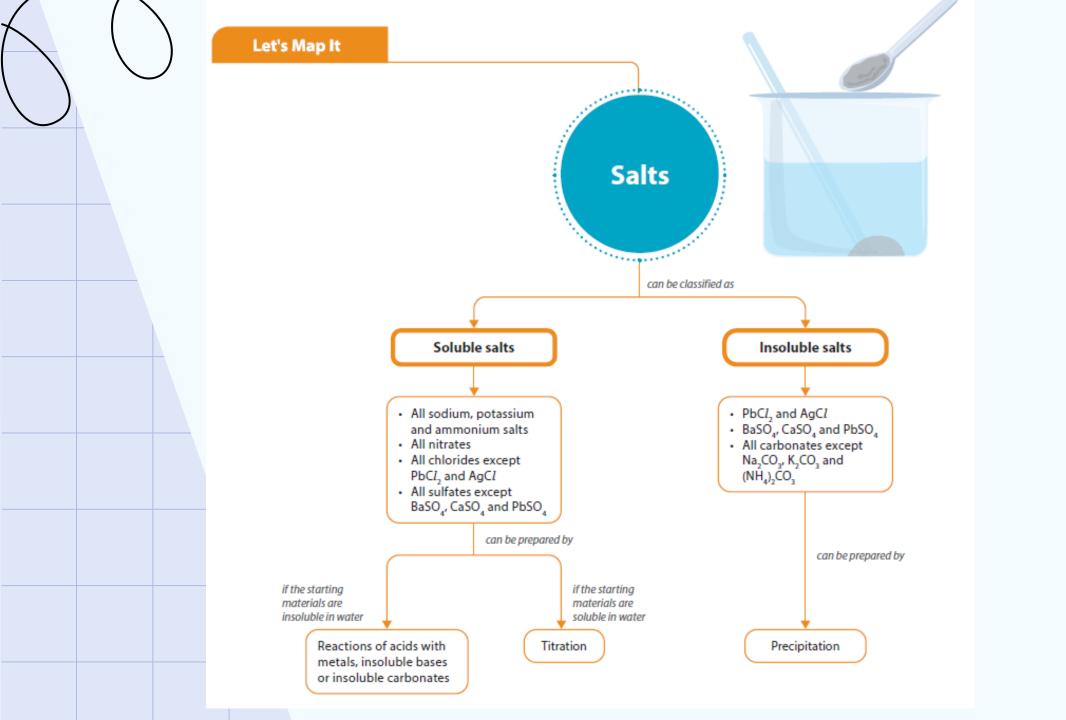
When a student tried to make the salt, $BaSO_4$ using $BaCO_3$ and a solution of dilute sulfuric acid, he noticed bubbles of CO_2 formed initially but the reaction soon stops. Why is this so?


Why cannot use Met

Why cannot use Method 1 to make insoluble salts?

Textbook Page 174

$$BaCO_3(s) + H_2SO_4(aq) \rightarrow BaSO_4(s) + H_2O(g) + CO_2(g)$$



$$BaCO_3(s) + H_2SO_4(aq) \rightarrow BaSO_4(s) + H_2O(g) + CO_2(g)$$

Textbook Page 174

What other salts cannot similarly be formed by reacting a metal carbonate with sulfuric acid?? Calcium sulfate and lead sulfate (chem, bio, phy)

Textbook Page 176

Summary of Lesson

- Before deciding on the method to prepare a salt, we must consider the following:
 - The solubility of the salt in water
 - The solubility of the starting materials in water
- Soluble salts are prepared from reactions of acids:
 - Reaction of an acid with an insoluble base/carbonates & metals
 - Reaction of an acid with a soluble base or carbonate (titration)
 - Insoluble salts are prepared by the precipitation method.