2014 H2 Mathematics Prelim P2 Worked Solutions

Qn	Solution	Notes
1(a)	$e^{y+x} = \cos x$	
(i)	$y = \ln(\cos x) - x$	
	Differentiate wrt x	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\tan x - 1$	
	Differentiate wrt x	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\mathrm{sec}^2 x$	
	x = 0	
	y = 0	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -1$	
	dx	
	$\frac{\mathrm{d}^2 y}{\mathrm{d} v^2} = -1$	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -1$ $y = -x - \frac{x^2}{2} + \dots$	
(a)	$ \mathbf{h}(x) - y < 0.2$	
(ii)	$ \mathbf{h}(x) - y - 0.2 < 0$	
	Ploti Plot2 Plot3	
	From GC, -1.12 < x < 1.12 (to 3 s.f)	
	$-1.12 \times \lambda \times 1.12 \text{ (10 J S.1)}$	

1(b)	$(x)^n$ $(x)^n$
	$\left \left(a - \frac{x}{3} \right)^n = a^n \left(1 - \frac{x}{3a} \right)^n \right $
	$=a^n \left(1 - \frac{xn}{3a} + \frac{n(n-1)}{2} \left(\frac{x}{3a}\right)^2 + \dots\right)$
	$= a^{n} \left(1 - \frac{n}{3a} x + \frac{n(n-1)}{18a^{2}} x^{2} + \dots \right)$
	$-\frac{n}{3a} = \frac{4n(n-1)}{18a^2}$
	$n = 1 - \frac{3a}{2}$
	$a^n = \frac{1}{4}$
	Sub $n = 1 - \frac{3a}{2}$
	$a^{1-\frac{3a}{2}} = \frac{1}{4}$
	From GC, $a = 2$ or 0.16086 (to 5 s.f)
	when $a = 2$, $n = -2$
	when $a = 0.161$ (to 3 s.f), $n = 0.759$ (to 3 s.f)

2(a)	12	
2(a)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = a\mathrm{e}^{-2x}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{a\mathrm{e}^{-2x}}{-2} + c$	
	dx = -2	
	$y = \frac{ae^{-2x}}{4} + cx + d$	
	4	
2(b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = kx - p$	
	dt	
	Given that $\frac{dx}{dt} = 0$ when $x = 12$.	
	$\Rightarrow 12k - p = 0$	
	$\Rightarrow k = \frac{p}{12}$	
	12	
	$\therefore \frac{dx}{dt} = \frac{px}{12} - p$	
	$\Rightarrow \frac{dx}{dt} = \frac{p}{12}(x-12)$ (Shown)	
	dt = 12	
(i)	$\int \frac{1}{x-12} \mathrm{d}x = \int \frac{p}{12} \mathrm{d}t$	
	$\int \frac{1}{x-12} dx - \int \frac{1}{12} dt$	
	$ \ln\left x-12\right = \frac{p}{12}t + c $	
	12	
	$x - 12 = \pm e^{\frac{p}{12}t + c}$	
	$x = 12 + Ae^{\frac{p}{12}t}$, where $A = \pm e^{c}$	
	When $t = 0$, $x = 10 \implies A = -2$	
	$\therefore x = 12 - 2e^{\frac{p}{12}t}$	
	x = 12 20	
(ii)	When $x = 0$, $t = T$	
	$\Rightarrow 12 - 2e^{\frac{p}{12}T} = 0$	
	$\Rightarrow \frac{p}{12}T = \ln 6$	
	$\frac{12}{12}$	
	$\Rightarrow T = \frac{12}{100} \ln 6$	
	p	
(c)	x	
	10	
	$x = 12 - 2e^{\frac{p}{12}t}$	
	$x = 12 - 2e^{12}$	
	\xrightarrow{T} t	
	T	

3	(i)	Since A lies in the plane π_1 , $\begin{pmatrix} -10 \\ 0 \\ 5 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ 0 \end{pmatrix} = -30$. $\Rightarrow -10\alpha = -30$ $\Rightarrow \alpha = 3$ Perpendicular distance from O to $\pi_1 = 6$ $\Rightarrow \frac{ \overrightarrow{OA} \cap \mathbf{n}_1 }{ \mathbf{n}_1 } = 6$
		$\Rightarrow \frac{ -30 }{ \mathbf{n}_1 } = 6$ $\Rightarrow \mathbf{n}_1 = 5$ $\Rightarrow \alpha^2 + \beta^2 = 5^2$
		$\Rightarrow \alpha^2 + \beta^2 = 5^2$ $\Rightarrow \beta = 4$
	(ii)	Acute angle between OA and π_2
		$= \sin^{-1} \frac{ \overrightarrow{OA} \square \mathbf{n}_{2} }{ \overrightarrow{OA} \mathbf{n}_{2} }$ $= \sin^{-1} \frac{\begin{pmatrix} -10 \\ 0 \\ 5 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}}{\begin{pmatrix} -10 \\ 0 \\ 5 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 2 \\ 2 \end{pmatrix}}$ $= \sin^{-1} \frac{20}{\sqrt{125}\sqrt{6}}$ $= 46.9^{\circ}$
	(iii)	$ \begin{pmatrix} -10 \\ 0 \\ 5 \end{pmatrix} \times \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -5 \\ 15 \\ -10 \end{pmatrix} $ A normal to plane π_3 is $\begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$. A cartesian equation is $x - 3y + 2z = 0$.

4(i)	$p = 1 - i$, $q = 1 + \sqrt{3}i$, $r = k + i$	
	$\Rightarrow p = \sqrt{1^2 + (-1)^2} = \sqrt{2}, q = \sqrt{1^2 + (\sqrt{3})^2} = 2, r = \sqrt{k^2 + 1}$	
	$arg(p) = -\frac{1}{4}\pi$, $arg(q) = \frac{1}{3}\pi$	
	$ s = \frac{1}{2}$	
	$\Rightarrow \frac{ p ^2 r }{ q ^3} = \frac{1}{2}$	
	$\Rightarrow \frac{\left(\sqrt{2}\right)^2 \sqrt{k^2 + 1}}{\left(2\right)^3} = \frac{1}{2}$	
	$\Rightarrow \sqrt{k^2 + 1} = 2$	
	$\Rightarrow k^2 + 1 = 4$	
	$\Rightarrow k = \pm \sqrt{3}$	
	$\arg(s) = -\frac{2}{3}\pi$	
	$\Rightarrow 2\arg(p) + \arg(r) - 3\arg(q) = -\frac{2}{3}\pi$	
	$\Rightarrow \arg(r) = -\frac{2}{3}\pi - 2\left(-\frac{1}{4}\pi\right) + 3\left(\frac{1}{3}\pi\right) = \frac{5}{6}\pi$	
	If $k = \sqrt{3}$, then $\arg(r) = \frac{1}{6}\pi$	
	If $k = -\sqrt{3}$, then $\arg(r) = \frac{5}{6}\pi$	
	$\therefore k = -\sqrt{3}$	

4(ii)	$z^3 = 4(1+\sqrt{3} i)$
	$z^3 = 8e^{i\left(\frac{1}{3}\pi + 2k\pi\right)}$
	$=8e^{i\left(\frac{1+6k}{3}\right)\pi}$
	$z = 2e^{i\left(\frac{1+6k}{9}\right)\pi}, k = -1, 0, 1$
	$=2\mathrm{e}^{\mathrm{i}\left(-rac{5}{9}\pi ight)}, 2\mathrm{e}^{\mathrm{i}\left(rac{\pi}{9} ight)}, 2\mathrm{e}^{\mathrm{i}\left(rac{7}{9}\pi ight)}$
	$w^3 = 4\left(\sqrt{3} - i\right)$
	$w^3 = 4i\left(-\sqrt{3}i - 1\right)$
	$w^3 = -4i\left(1 + \sqrt{3}i\right)$
	$w^3 = (i)^3 4(1 + \sqrt{3}i)$ since $i^2 = -1$
	$\left(\frac{w}{i}\right)^3 = 4\left(1 + \sqrt{3}i\right)$
	Comparing with $z^3 = 4(1+\sqrt{3}i)$
	$\frac{w}{i} = z$
	w = iz
	$w = e^{i\left(\frac{\pi}{2}\right)}z$
	$= e^{i\left(\frac{\pi}{2}\right)} \times 2e^{i\left(-\frac{5}{9}\pi\right)} \ , e^{i\left(\frac{\pi}{2}\right)} \times 2e^{i\left(\frac{\pi}{9}\right)} , e^{i\left(\frac{\pi}{2}\right)} \times 2e^{i\left(\frac{\pi}{9}\pi\right)}$
	$=2e^{i\left(-\frac{1}{18}\right)\pi},2e^{i\left(\frac{11}{18}\right)\pi},2e^{i\left(\frac{-13}{18}\right)\pi}$

5(i)	This is quo	ta sampling.	
			is that the sample is not a n (residents of the town).
(ii)	Select the stratum bel	_	dents <u>randomly</u> from each
		18 - 25 year old	26 - 35 year old
	Male	$\frac{75}{250} \times 100 \approx 30$	$\frac{36}{250} \times 100 \approx 14$
	Female	$\frac{99}{250} \times 100 \approx 40$	$\frac{40}{250} \times 100 \approx 16$

6	Given $X \sim N(\mu, \sigma^2)$,	
	$P(2X_1 < X_2) = 0.8$	
	$P(2X_1 - X_2 < 0) = 0.8$	
	Now, $2X_1 - X_2 \sim N(\mu, 5\sigma^2)$	
	$P\left(Z < -\frac{\mu}{\sqrt{5}\sigma}\right) = 0.8$	
	$-\frac{\mu}{\sqrt{5}\sigma} = 0.84162$	
	$\mu = -1.8819\sigma$	
	$\sigma = -0.53138\mu$	
	$P(X_1 + X_2 > 2a) = 0.8$	
	$P(X_1 + X_2 < 2a) = 0.2$	
	Now, $X_1 + X_2 \sim N(2\mu, 2\sigma^2)$	
	$P\left(Z < \frac{2a - 2\mu}{\sqrt{2}\sigma}\right) = 0.2$	
	$\frac{2a-2\mu}{\sqrt{2}\sigma} = -0.84162$	
	$a - \mu = -0.59512\sigma$	
	$a - \mu = -0.59512(-0.53138\mu)$	
	$\mu = 0.75974a$	
	=0.760a	

7(i)	P(B A') = 0.75
	$\frac{P(B \cap A')}{P(A')} = 0.75$
	$\frac{P(A')}{P(A')} = 0.75$
	$P(B \cap A') = 0.75(1-0.6)$
	= 0.3
	= 0.5
	$A \longrightarrow B$
	$P(A' \cap B') = 1 - P(A) - P(B \cap A')$
	=1-0.6-0.3
	= 0.1
(ii)	P(A B) = 0.4
	$\frac{P(A \cap B)}{P(B)} = 0.4$
	$P(A \cap B) = 0.4P(B)$
	$P(B) = P(B \cap A') + P(A \cap B)$
	= 0.3 + 0.4 P(B)
	$\therefore 0.6P(B) = 0.3$
	P(B) = 0.5
	P(A) = 0.6
	P(A B) = 0.4
	$\therefore P(A B) \neq P(A)$
	\therefore A and B are not independent.

8	1A, 1B, 1S, 2E, 1N, 1C	
	No. of code words formed with 2'E's = ${}^5C_2 \times \frac{4!}{2!}$	
	=120	
	No. of code words formed with 1 or no 'E' = ${}^6C_4 \times 4!$	
	= 360	
	Total no. of code words $= 120 + 360$	
	= 480 (shown)	
(i)	P(four-letter code words contain distinct letters)	
	No. of code words formed with 1 or no 'E'	
	No. of code words formed without restrictions	
	$=\frac{360}{}$	
	$-\frac{480}{}$	
	=0.75	
(ii)	code words do not contain code words contain	
	P any vowels distinct letters	
	$-\left(\frac{{}^{4}C_{4}\times4!}{480}\right)$	
	0.75	
	$=\frac{1}{2}$	
	15	

9(i)	y = -0.175x + 3.57	
	$\overline{y} = -0.175\overline{x} + 3.57$	
	$\frac{22.94 + k}{9} = -0.175 \left(\frac{38.8}{9}\right) + 3.57$	
	$\therefore k = 2.40 \text{ (shown)}$	
(ii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Using GC: $r = -0.943$ (3 s.f.)	
	Even though r is close to -1 , from the scatter diagram, the data points do not follow a straight line. Therefore, a linear model may not be suitable.	
(iii)	C is the appropriate model as the data points in the scatter diagram follow the graph of $y = e + \frac{f}{x}$.	
(iv)	Equation of regression line $y = \frac{2.7480}{x} + 2.0651$ $y = \frac{2.75}{x} + 2.07 \text{ (to 3 s.f.)}$ When $x = 8.0$, 2.7480	
	$y = \frac{2.7480}{8.0} + 2.0651 = 2.41 \text{ (to 2 d.p.)}$ Since $x = 8.0$ falls outside the data range of x , the estimation	
	of y is unreliable.	

10(i)	$\sum x = 1620$ and $\sum x^2 = 221175$	
	Unbiased estimate of population mean = $\frac{1620}{12}$	
	=135	
	Unbiased estimate of population variance	
	$=\frac{1}{11}\left[221175 - \frac{1620^2}{12}\right]$	
	= 225	
(ii)	$H_0: \mu = 124.5$	
	$H_1: \mu \neq 124.5$	
	Let X = number of packets of cereal sold daily. Since n = 12 is small,	
	Under H ₀ , $T = \frac{\overline{X} - \mu_0}{\sqrt{\frac{S^2}{n}}} \sim t(n-1)$	
	$\alpha = 0.01$ From GC, p -value = 0.0337	
	Since p -value = 0.0337 > α = 0.01, we do not reject H ₀ at 1% level of significance and conclude there is insufficient evidence that the mean number of packets of cereal sold per day has changed.	
(iii)	$H_0: \mu = 124.5$	
	$H_1: \mu > 124.5$	
	Under H_0 , $\overline{X} \square N\left(124.5, \frac{13^2}{12}\right)$	
	Test statistic: $z = \frac{\overline{x} - 124.5}{\sqrt{\frac{169}{12}}}$	
	$\alpha = 0.01$	
	Reject H_0 if $z \ge 2.3263$	
	$\alpha = 0.01$ Reject H ₀ if $z \ge 2.3263$ Since H ₀ is rejected, $\frac{\overline{x} - 124.5}{\sqrt{\frac{13^2}{12}}} \ge 2.3263$	
	$\sqrt{12}$	
	$\bar{x} \ge 133.23$	
	It means that there is a probability of 0.01 of concluding that	
	the mean number of packets of cereal sold per day is more	
	than 124.5, when in fact the mean number is 124.5.	

11	Let <i>X</i> be the number of emergency admissions per day	
(i)	$X \square \text{Po}(3)$	
	$X_1 + X_2 \square Po(6)$	
	D(W W 0) 0.0000 (v 0 0)	
	$P(X_1 + X_2 = 3) = 0.0892$ (to 3 s.f.)	
(ii)	Let length of time = t hr	
	Let <i>T</i> be the number of emergency admissions in <i>t</i> hours.	
	$T \square \operatorname{Po}\left(\frac{3t}{24}\right)$	
	$P(T=0) = e^{-\frac{3t}{24}} = 0.2$	
	$-\frac{3t}{24} = \ln 0.2$	
	24	
	$t = -8\ln 0.2$	
	≈ 13 hr	
(iii)	$P(X > 4) = 1 - P(X \le 4)$	
	$= 0.18474 \approx 0.185$ (to 3 s.f.)	
(iv)	Let Y be the number of days with at most 4 admissions out of	
	50 days.	
	$Y \square B(50, 0.81526)$	
	Since $n = 50$ is large, $np = 40.763 > 5$, $nq = 9.237 > 5$,	
	$Y \square N(40.763, 7.5306)$ approximately	
	$P(Y < 40) \xrightarrow{C.C.} P(Y < 39.5) \approx 0.323$	
(v)	Let W be the number of patients who require surgery out of	
	15.	
	$W \square B(15,0.4)$	
	E(W) = 15(0.4) = 6	
	Var(W) = 15(0.4)(1-0.4) = 3.6	
	Let \overline{W} be the mean number of patients who require surgery.	
	Since <i>n</i> is large, so by Central Limit Theorem,	
	$\overline{W} \square N(6, \frac{3.6}{50})$ approximately.	
	$P(\overline{W} > 5.5) = 0.96880$	
	≈ 0.969 (to 3 s.f)	