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Syllabus requirements

More inequalities outside the syllabus will be included, and some of the in-
equalities below will be detailed at greater depth.

� AM-GM inequality

� Cauchy-Schwarz inequality

� Triangle inequality

Read this first before continuing

This document is only meant to cover inequalities in the H3 syllabus. It may
not be enough to cover inequalities expected at mathematical olympiads,
although this can be a great starting point. Most non-trivial inequalities
here are proven.

If you would like to see resources on mathematical olympiad inequali-
ties, the author recommends Yufei Zhao’s handout on inequalities and Evan
Chen’s brief notes.

1

https://yufeizhao.com/olympiad/wc08/ineq.pdf
https://web.evanchen.cc/handouts/Ineq/en.pdf
https://web.evanchen.cc/handouts/Ineq/en.pdf


Contents

1 The AM-GM inequality and other extensions 3
1.1 Proof of the AM-GM inequality . . . . . . . . . . . . . . . . . 3
1.2 Weighted AM-GM inequality . . . . . . . . . . . . . . . . . . 5
1.3 QM-AM-GM-HM inequality chain . . . . . . . . . . . . . . . 5

2 The Cauchy-Schwarz inequality 7
2.1 Proof of the inequality . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Titu’s lemma and Nesbitt’s inequality . . . . . . . . . . . . . 9

3 The triangle inequality 10
3.1 Two-variable triangle inequality . . . . . . . . . . . . . . . . . 10
3.2 Generalized triangle inequality . . . . . . . . . . . . . . . . . 11

2



1 The AM-GM inequality and other extensions

The arithmetic mean-geometric mean inequality is one of the most important
inequalities in mathematics – whether it be in Olympiads or in general, it
is used widely in proofs involving non-negative real numbers.

For starters, we have the following definitions:

Definition 1.1. The arithmetic mean of a1, a2, . . . , an ∈ R+
0 is defined as

AM =
a1 + a2 + · · ·+ an

n
=

1

n

n∑
k=1

ak

Definition 1.2. The geometric mean of a1, a2, . . . , an ∈ R+
0 is defined as

GM = n
√
a1a2 . . . an = n

√√√√ n∏
k=1

ak

1.1 Proof of the AM-GM inequality

Now, we will prove the AM-GM inequality. Consider the simple case n = 2,
where

a1 + a2
2

≥
√
a1a2

This holds if and only if

a21 + 2a1a2 + a22
4

≥ a1a2

a21 + 2a1a2 + a22 − 4a1a2 ≥ 0

a21 − 2a1a2 + a22 ≥ 0

(a1 − a2)
2 ≥ 0

which is obviously true since a1, a2 ∈ R.

Theorem 1.3 (AM-GM inequality). For any a1, a2, . . . , an ∈ R+
0 ,

a1 + a2 + · · ·+ an
n

≥ n
√
a1a2 . . . an

with equality attained if and only if a1 = a2 = · · · = an.

Proof. The above inequality can be reduced to the inequality(
a1 + a2 + · · ·+ an

n

)n

≥ a1a2 . . . an

on which we proceed by induction.
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The base case n = 1 results in equality. Hence, suppose that the in-
equality holds for some arbitrary n.

Then, consider the case n+ 1, with a1, a2, . . . , an, an+1 ∈ R+
0 . We know

that

α =
a1 + a2 + · · ·+ an + an+1

n+ 1
is their mean. If a1 = a2 = · · · = an = an+1, then there is equality.

Otherwise, there exists ai < α < aj . Since addition and multiplication
are commutative, the list a1, . . . , an, an+1 can be reordered such that ai =
an < α and aj = an+1 > α without loss of generality. Since an+1 − α > 0
and an − α > 0, it follows that (an+1 − α)(an − α) > 0. We know that
α(n+ 1) = a1 + · · ·+ an+1 so

α =
a1 + · · ·+ an−1 + (an + an+1 − α)

n
.

Due to the induction hypothesis, one has αn+1 = αnα ≥ a1a2 . . . an−1(an +
an+1 − α)α.

We use the result (an+1−α)(an−α) > 0 to justify that (an+1−α)(an−
α) = α(an + an+1 − α)− anan+1 > 0 implying (an + an+1 − α)α > anan+1.

Hence

αn+1 = αnα ≥ a1a2 . . . an−1(an + an+1 − α)α ≥ a1a2 . . . anan+1

and the proof is complete.

Example 1.4 (IMO 2020 Shortlisted Problem). Suppose a, b, c, d ∈ R+

satisfy ac+bd = (a+c)(b+d). Find the smallest possible value of a
b+

b
c+

c
d+

d
a .

Solution. We know that

a

b
+

b

c
+

c

d
+

d

a
=
(a
b
+

c

d

)
+

(
b

c
+

d

a

)
and (a

b
+

c

d

)
+

(
b

c
+

d

a

)
≥ 2

(√
ac

bd
+

√
bd

ac

)
Clearly,√

ac

bd
+

√
bd

ac
=

√
ac√
bd

+

√
bd√
ac

=

√
ac√
bd

+

√
bd√
ac

=
ac+ bd√

abcd
=

(a+ c)(b+ d)√
abcd

Using again the AM-GM inequality, a+ c ≥ 2
√
ac and b+ d ≥ 2

√
bd so

a

b
+

b

c
+

c

d
+

d

a
≥ 2

(
(a+ c)(b+ d)√

abcd

)
≥ 2

(
(2
√
ac)(2

√
bd)√

abcd

)
= 8

and so the minimum value is 8.

The AM-GM inequality appears in the formula booklet, unlike the more
powerful inequalities like the weighted AM-GM inequality and the QM-AM-
GM-HM inequality chain.
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1.2 Weighted AM-GM inequality

Theorem 1.3 implies the weighted AM-GM inequality, which states:

Corollary 1.5 (Weighted AM-GM inequality). For any w1, w2, . . . , wn ≥ 0
corresponding to a1, a2, . . . , an ≥ 0,

w1a1 + w2a2 + · · ·+ wnan
Σw

≥ Σw

√
aw1
1 aw2

2 . . . awn
n

where Σw = w1+ · · ·+wn, with equality attained only when a1 = a2 = · · · =
an.

A proof will not be provided here.

1.3 QM-AM-GM-HM inequality chain

The quadratic mean-arithmetic mean-geometric mean-harmonic mean in-
equality chain, also known as the mean inequality chain, state the relation-
ship between the harmonic mean, geometric mean, arithmetic mean, and
quadratic mean of positive real numbers. This time, no number can be zero,
or the harmonic mean would be undefined.

Definition 1.6. The quadratic mean (root mean square) of a1, a2, . . . , an ∈
R+ is defined as

QM =

√
a21 + a22 + · · ·+ a2n

n
=

√√√√ 1

n

n∑
k=1

a2k

Definition 1.7. The harmonic mean of a1, a2, . . . , an ∈ R+ is defined as

HM =
n

1
a1

+ 1
a2

+ · · ·+ 1
an

In order to prove that QM ≥ AM ≥ GM ≥ HM, one must prove sepa-
rately that QM ≥ AM, then AM ≥ GM implies QM ≥ AM ≥ GM. Finally,
proving GM ≥ HM completes the inequality chain.

Lemma 1.8 (QM-AM). For any a1, a2, . . . , an ∈ R+,√
a21 + a22 + · · ·+ a2n

n
≥ a1 + a2 + · · ·+ an

n

Proof. This reduces to the inequality

a21 + a22 + · · ·+ a2n
n

≥ a21 + a22 + · · ·+ a2n
n2

≥
(
a1 + a2 + · · ·+ an

n

)2
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which holds due to n ≥ 1, n ∈ Z+ and Theorem 2.1, which asserts(
n∑

k=0

ukvk

)2

≤

(
n∑

k=0

u2k

)(
n∑

k=0

v2k

)

for uk, vk ∈ R.

Lemma 1.9 (GM-HM). For any a1, a2, . . . , an ∈ R+,

n
√
a1a2 . . . an ≥ n

1
a1

+ 1
a2

+ · · ·+ 1
an

Proof. This inequality reduces to

1
n
√
a1a2 . . . an

≤
1
a1

+ 1
a2

+ · · ·+ 1
an

n

However,

1
n
√
a1a2 . . . an

= ( n
√
a1a2 . . . an)

−1 = (a1a2 . . . an)
− 1

n =

√
1

a1

1

a2
. . .

1

an

and thus the inequality above holds, due to the AM-GM inequality.

Theorem 1.10 (QM-AM-GM-HM). For any a1, a2, . . . , an ∈ R+,√
a21 + a22 + · · ·+ a2n

n
≥ a1 + a2 + · · ·+ an

n

≥ n
√
a1a2 . . . an

≥ n
1
a1

+ 1
a2

+ · · ·+ 1
an

where no number is zero.

Proof. This follows by Lemma 1.8 and Lemma 1.9, as well as Theorem
1.3.
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2 The Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality (or Cauchy-Bunyakovsky-Schwarz inequal-
ity) provides an upper bound on the inner product between two vectors
in an inner product space in terms of the product of the vector norms (or
magnitudes).

Formally, an inner product space is a real or complex vector space (per-
mitting vector arithmetic) bundled with an operation called the inner prod-
uct. An inner product is usually denoted ⟨u⃗, v⃗⟩. The inner product of Rn

satisfies the following conditions:

� ⟨u⃗, v⃗⟩ = ⟨v⃗, u⃗⟩. In other words, the inner product is commutative for
real vectors u⃗, v⃗.

� ⟨ax⃗+ by⃗, z⃗⟩ = a⟨x⃗, z⃗⟩+ b⟨y⃗, z⃗⟩ for scalars a, b ∈ R.

� ⟨x⃗, x⃗⟩ > 0 if x⃗ is not the zero vector.

We will operate in the real vector space Rn where vectors are of length
n, and we use the dot product as the inner product; all the properties above
are satisfied.

2.1 Proof of the inequality

Theorem 2.1 (Cauchy-Schwarz in Rn). For any u1, . . . , un and v1, . . . , vn ∈
R, (

n∑
k=0

ukvk

)2

≤

(
n∑

k=0

u2k

)(
n∑

k=0

v2k

)
with equality if and only if there exists c ̸= 0 such that uk = cvk for all
i = 1, 2, . . . , n.

Proof. Consider the real vectors

a⃗ =


u1
u2
...
un

 b⃗ =


v1
v2
...
vn


of length n, where ui, vi ∈ R for any i = 1, 2, . . . , n. Then, if |x⃗| denotes the
Euclidean norm |x⃗| =

√
x21 + · · ·+ x2n,

|⃗a||⃗b| cos(θ) = a⃗ · b⃗ = u1v1 + u2v2 + · · ·+ unvn

and so√
u21 + u22 + · · ·+ u2n

√
v21 + v22 + · · ·+ v2n cos(θ) = u1v1 + u2v2 + · · ·+ unvn
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where θ is the angle between a⃗ and b⃗. Since cos2(θ) ∈ [0, 1] for any θ, it is
obvious that after squaring both sides one has(

u21 + u22 + · · ·+ u2n
) (

v21 + v22 + · · ·+ v2n
)
≥ (u1v1 + u2v2 + · · ·+ unvn)

2

and in summation notation,(
n∑

k=0

ukvk

)2

≤

(
n∑

k=0

u2k

)(
n∑

k=0

v2k

)

Thus the proof is complete. The condition of equality is obvious and shall
not be proven here.

Example 2.2. Prove that

x+ y + z ≤ 2

(
x2

y + z
+

y2

z + x
+

z2

x+ y

)
for all positive x, y, z ∈ R.

Solution. We recognize that the Cauchy-Schwarz inequality uses squares,
and express the inequality as follows:

x+ y + z ≤ 2


u2
1︷ ︸︸ ︷(

x√
y + z

)2

+

u2
2︷ ︸︸ ︷(

y√
z + x

)2

+

u3
3︷ ︸︸ ︷(

z√
x+ y

)2


We can get rid of the denominator, multiplying both sides by v21 +v22 +v23 =√
(y + z)2 +

√
(z + x)2 +

√
(x+ y)2 = 2(x+ y + z). Hence one obtains

(x+ y + z)2 ≤ 2

((
x√
y + z

)2

+

(
y√
z + x

)2

+

(
z√
x+ y

)2
)
(x+ y + z)

which is true due to the Cauchy-Schwarz inequality. Hence our inequality
is proven.

Exercise 2.3 (APMO 1991). Let a1, a2, . . . , an and b1, b2, . . . , bn be positive
real numbers such that a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn. Prove that

n∑
k=1

a2k
ak + bk

≥ 1

2

n∑
k=1

ak
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2.2 Titu’s lemma and Nesbitt’s inequality

Titu’s lemma is often used in mathematical competitions to provide a wide
range of inequalities, like Nesbitt’s inequality.

Proposition 2.4 (Titu’s lemma). The following inequality

a21
b1

+
a22
b2

+ · · ·+ a2n
bn

≥ (a1 + a2 + · · ·+ an)
2

b1 + b2 + · · ·+ bn

holds for all a1, . . . , an and b1, . . . , bn in R where bi > 0 for any i.

Proof. Consider uk = ak and vk = 1√
bk
. The inequality follows after Theorem

2.1.

Proposition 2.5 (Nesbitt’s inequality). The following inequality

a

b+ c
+

b

a+ c
+

c

a+ b
≥ 3

2

holds for any a, b, c ∈ R+, and equality is attained only when a = b = c.

Nesbitt’s inequality can be proved using various means, like the AM-
HM inequality which is part of the QM-AM-GM-HM chain covered in the
previous chapter, as well as the Cauchy-Schwarz inequality.

Exercise 2.6. Prove Theorem 2.5 using

1. the AM-HM inequality

2. the Cauchy-Schwarz inequality
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3 The triangle inequality

The triangle inequality states that the sum of the lengths of any two sides
of a triangle must be greater than or equal to the length of the remaining
side.

3.1 Two-variable triangle inequality

If we consider a triangle whose sides are vectors a⃗, b⃗, (⃗a + b⃗), we have the
following:

Theorem 3.1 (Triangle inequality). For any vectors a⃗, b⃗,

|⃗a+ b⃗| ≤ |⃗a|+ |⃗b|

with equality if and only if a⃗ and b⃗ point in the same direction and are
collinear.

Proof. We know that |v⃗|2 = v⃗ · v⃗ for any vector v⃗. Hence, we square both
sides of the above inequality and obtain

|⃗a+ b⃗|2 ≤ (|⃗a|+ |⃗b|)2 ⇐⇒ (⃗a+ b⃗) · (⃗a+ b⃗) ≤ |⃗a|2 + 2|⃗a||⃗b|+ |⃗b|2.

By the associativity and distributive property of the dot product,

(⃗a+ b⃗) · (⃗a+ b⃗) = a⃗ · (⃗a+ b⃗) + b⃗ · (⃗a+ b⃗) = |⃗a|2 + 2|⃗a||⃗b| cos(θ) + |⃗b|2

since a⃗ · b⃗ = |⃗a||⃗b| cos(θ) where θ is the angle between a⃗ and b⃗. Therefore one
has

|⃗a+ b⃗|2 ≤ (|⃗a|+ |⃗b|)2 ⇐⇒ |⃗a|2 + 2|⃗a||⃗b| cos(θ) + |⃗b|2 ≤ |⃗a|2 + 2|⃗a||⃗b|+ |⃗b|2.

This finally reduces to the inequality

|⃗a||⃗b| cos(θ) ≤ |⃗a||⃗b|

which is true because −1 ≤ cos(θ) ≤ 1. If a⃗ and b⃗ point in the same
direction, cos(θ) = cos(0) = 1 and equality is achieved. Hence the proof is
complete.

Example 3.2. The vectors u⃗, v⃗ and w⃗ are defined such that |u⃗| = 1, |v⃗| = 2
and |w⃗| = 3. If w⃗ = u⃗+ v⃗, explain why u⃗ is a unit vector parallel to w⃗.

Solution. By the triangle inequality, |u⃗| + |v⃗| ≥ |w⃗|, with equality attained
if and only if u⃗ and v⃗ (and w⃗ = u⃗ + v⃗) point in the same direction and
are collinear. Since |1|+ |2| = |3|, u⃗ is collinear with w⃗ and hence they are
parallel. Also, |u⃗| = 1 so u⃗ is a unit vector.

This also applies to the real numbers:
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Corollary 3.3. For any real a, b,

|a+ b| ≤ |a|+ |b|

with equality if and only if ab ≥ 0.

Proof. Consider the one-dimensional vectors u⃗ = ⟨a⟩ and u⃗ = ⟨b⟩. By
Theorem 3.1, |u⃗ + v⃗| ≤ |u⃗| + |v⃗|, where equality is attained when ab ≥ 0,
as it implies that u⃗ points in the same direction as v⃗ (because a, b have the
same sign). Obviously since the vectors are one-dimensional and span a line,
they are always collinear.

3.2 Generalized triangle inequality

Theorem 3.4. For any vectors v⃗1, v⃗2, . . . , v⃗n,∣∣∣∣∣
n∑

k=1

v⃗k

∣∣∣∣∣ ≤
n∑

k=1

|v⃗k|

with equality if and only if all the vectors point in the same direction and
are collinear.

Proof. By induction. We have already proved the base case for n = 2. Now,
for our induction hypothesis, suppose that∣∣∣∣∣

n∑
k=1

v⃗k

∣∣∣∣∣ ≤
n∑

k=1

|v⃗k|.

Our induction step is to prove that∣∣∣∣∣
n+1∑
k=1

v⃗k

∣∣∣∣∣ ≤
n+1∑
k=1

|v⃗k| ⇐⇒

∣∣∣∣∣v⃗n+1 +
n∑

k=1

v⃗k

∣∣∣∣∣ ≤ |v⃗n+1|+

∣∣∣∣∣
n∑

k=1

v⃗k

∣∣∣∣∣
≤ |v⃗n+1|+

n∑
k=1

|v⃗k|

and hence we are done.

Again, we must always find some way to apply the induction hypothesis
by some kind of substitution or algebraic manipulation. Above we treated∑n

k=1 v⃗k as another vector, before applying Theorem 3.1, and then the in-
duction hypothesis.

Example 3.5 (BMO 2010). Let a, b and c be the lengths of the sides of a
triangle. Suppose that ab+ bc+ ca = 1. Show that (a+1)(b+1)(c+1) < 4.

11



Solution. Expanding, one has

(a+ 1)(b+ 1)(c+ 1) = (ab+ 1 + a+ b)(c+ 1)

= abc+ ac+ bc+ c+ ab+ 1 + a+ b

= abc+ (ab+ bc+ ca) + c+ 1 + a+ b

= abc+ (a+ b+ c) + 2

If we were to obtain another expression of this form, we could consider

(a− 1)(b− 1)(c− 1) = (ab+ 1− a− b)(c− 1)

= abc+ (a+ b+ c)− 2

= abc+ (a+ b+ c) + 2− 4

= (a+ 1)(b+ 1)(c+ 1)− 4.

We now claim 0 < a, b, c < 1. Clearly, a, b, c > 0 because they are
lengths. Without loss of generality, we have c < a + b by the triangle
inequality. Hence c2 < ac+ bc and c2 < 1− ab < 1. Hence a, b, c < 1.

Now, we can confidently state (a − 1)(b − 1)(c − 1) < 0, so we have
(a+ 1)(b+ 1)(c+ 1)− 4 < 0. The inequality thus follows.

In the above problem, one may be wondering how we managed to get
(a−1)(b−1)(c−1). It is generally useful to play around with the expression
(a+1)(b+1)(c+1) to see if we can try to substitute it into another expression,
as we have done above. We could then prove that 0 < a, b, c < 1, which
allowed us to show that (a− 1)(b− 1)(c− 1) was negative, and we obtained
an inequality from that.
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